1
|
Portillo-Ledesma S, Schlick T. Regulation of chromatin architecture by protein binding: insights from molecular modeling. Biophys Rev 2024; 16:331-343. [PMID: 39099845 PMCID: PMC11297222 DOI: 10.1007/s12551-024-01195-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/22/2024] [Indexed: 08/06/2024] Open
Abstract
Histone and non-histone proteins play key roles in the activation and repression of genes. In addition to experimental studies of their regulation of gene expression, molecular modeling at the nucleosome, chromatin, and chromosome levels can contribute insights into the molecular mechanisms involved. In this review, we provide an overview for protein-bound chromatin modeling, and describe how our group has integrated protein binding into genome systems across the scales, from all-atom to coarse-grained models, using explicit to implicit descriptions. We describe the associated applications to protein binding effects and biological mechanisms of genome folding and gene regulation. We end by illustrating the application of machine learning tools like AlphaFold2 to proteins relevant to chromatin systems.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
2
|
Interphase epichromatin: last refuge for the 30-nm chromatin fiber? Chromosoma 2021; 130:91-102. [PMID: 34091761 DOI: 10.1007/s00412-021-00759-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 01/08/2023]
Abstract
"Interphase epichromatin" describes the surface of chromatin located adjacent to the interphase nuclear envelope. It was discovered in 2011 using a bivalent anti-nucleosome antibody (mAb PL2-6), now known to be directed against the nucleosome acidic patch. The molecular structure of interphase epichromatin is unknown, but is thought to be heterochromatic with a high density of "exposed" acidic patches. In the 1960s, transmission electron microscopy of fixed, dehydrated, sectioned, and stained inactive chromatin revealed "unit threads," frequently organized into parallel arrays at the nuclear envelope, which were interpreted as regular helices with ~ 30-nm center-to-center distance. Also observed in certain cell types, the nuclear envelope forms a "sandwich" around a layer of closely packed unit threads (ELCS, envelope-limited chromatin sheets). Discovery of the nucleosome in 1974 led to revised helical models of chromatin. But these models became very controversial and the existence of in situ 30-nm chromatin fibers has been challenged. Development of cryo-electron microscopy (Cryo-EM) gave hope that in situ chromatin fibers, devoid of artifacts, could be structurally defined. Combining a contrast-enhancing phase plate and cryo-electron tomography (Cryo-ET), it is now possible to visualize chromatin in a "close-to-native" situation. ELCS are particularly interesting to study by Cryo-ET. The chromatin sheet appears to have two layers of ~ 30-nm chromatin fibers arranged in a criss-crossed pattern. The chromatin in ELCS is continuous with adjacent interphase epichromatin. It appears that hydrated ~ 30-nm chromatin fibers are quite rare in most cells, possibly confined to interphase epichromatin at the nuclear envelope.
Collapse
|
3
|
Abstract
Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse ("congelation"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a "global" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an "intermediate" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a "local" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| |
Collapse
|
4
|
Bai Y, Zhou BR. Structures of Native-like Nucleosomes: One Step Closer toward Understanding the Structure and Function of Chromatin. J Mol Biol 2020; 433:166648. [PMID: 32920051 DOI: 10.1016/j.jmb.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Genomic DNA in eukaryotes is organized into chromatin through association with core histone proteins to form nucleosomes. To understand the structure and function of chromatin, we must determine the structures of nucleosomes containing native DNA sequences. However, to date, our knowledge of nucleosome structures is mainly based on the crystallographic studies of the nucleosomes containing non-native DNA sequences. Here, we discuss the technical issues related to the determination of the nucleosome structures and review the few structural studies on native-like nucleosomes. We show how an antibody fragment-aided single-particle cryo-EM can be a useful method to determine the structures of nucleosomes containing genomic DNA. Finally, we provide a perspective for future structural studies of some native-like nucleosomes that play critical roles in chromatin functions.
Collapse
Affiliation(s)
- Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Teif VB, Gould TJ, Clarkson CT, Boyd L, Antwi EB, Ishaque N, Olins AL, Olins DE. Linker histone epitopes are hidden by in situ higher-order chromatin structure. Epigenetics Chromatin 2020; 13:26. [PMID: 32505195 PMCID: PMC7276084 DOI: 10.1186/s13072-020-00345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
Collapse
Affiliation(s)
- Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA
| | | | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA.,StarBird Technologies, LLC, Brunswick, ME, USA
| | - Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Molecular and Cellular Engineering, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104 , Germany
| | - Naveed Ishaque
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178 , Germany
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA.
| |
Collapse
|
6
|
Myers CG, Olins DE, Olins AL, Schlick T. Mesoscale Modeling of Nucleosome-Binding Antibody PL2-6: Mono- versus Bivalent Chromatin Complexes. Biophys J 2020; 118:2066-2076. [PMID: 31668748 PMCID: PMC7202932 DOI: 10.1016/j.bpj.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Interactions of chromatin with bivalent immunoglobin nucleosome-binding antibodies and their monovalent (papain-derived) antigen-binding fragment analogs are useful probes for examining chromatin conformational states. To help interpret antibody-chromatin interactions and explore how antibodies might compete for interactions with chromatin components, we incorporate coarse-grained PL2-6 antibody modeling into our mesoscale chromatin model. We analyze interactions and fiber structures for the antibody-chromatin complexes in open and condensed chromatin, with and without H1 linker histone (LH). Despite minimal and transient interactions at physiological salt, we capture significant differences in antibody-chromatin complex configurations in open fibers, with more intense interactions between the bivalent antibody and chromatin compared to monovalent antigen-binding fragments. For these open chromatin fiber morphologies, antibody binding to histone tails is increased and compaction is greater for bivalent compared to monovalent and antibody-free systems. Differences between monovalent and bivalent binding result from antibody competition with internal chromatin fiber components (nucleosome core and linker DNA) for histone tail (H3, H4, H2A, H2B) interactions. This antibody competition for tail contacts reduces tail-core and tail-linker interactions and increases tail-antibody interactions. Such internal structural changes in open fibers resemble mechanisms of LH condensation, driven by charge screening and entropy changes. For condensed fibers at physiological salt, the three systems are much more similar overall, but some subtle tail interaction differences can be noted. Adding LH results in less-dramatic changes for all systems, except that the bivalent complex at physiological salt shows cooperative effects between LH and the antibodies in condensing chromatin fibers. Such dynamic interactions that depend on the internal structure and complex-stabilizing interactions within the chromatin fiber have implications for gene regulation and other chromatin complexes such as with LH, remodeling proteins, and small molecular chaperones that bind and modulate chromatin structure.
Collapse
Affiliation(s)
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, Maine
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, Maine
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China.
| |
Collapse
|
7
|
Erenpreisa J, Krigerts J, Salmina K, Selga T, Sorokins H, Freivalds T. Differential staining of peripheral nuclear chromatin with Acridine orange implies an A-form epichromatin conformation of the DNA. Nucleus 2019; 9:171-181. [PMID: 29363398 PMCID: PMC5973139 DOI: 10.1080/19491034.2018.1431081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chromatin observed by conventional electron microscopy under the nuclear envelope constitutes a single layer of dense 30–35 nm granules, while ∼30 nm fibrils laterally attached to them, form large patches of lamin-associated domains (LADs). This particular surface “epichromatin” can be discerned by specific (H2A+H2B+DNA) conformational antibody at the inner nuclear envelope and around mitotic chromosomes. In order to differentiate the DNA conformation of the peripheral chromatin we applied an Acridine orange (AO) DNA structural test involving RNAse treatment and the addition of AO after acid pre-treatment. MCF-7 cells treated in this way revealed yellow/red patches of LADs attached to a thin green nuclear rim and with mitotic chromosomes outlined in green, topologically corresponding to epichromatin epitope staining by immunofluorescence. Differentially from LADs, the epichromatin was unable to provide metachromatic staining by AO, unless thermally denatured at 94oC. DNA enrichment in GC stretches has been recently reported for immunoprecipitated ∼ 1Kb epichromatin domains. Together these data suggest that certain epichromatin segments assume the relatively hydrophobic DNA A-conformation at the nuclear envelope and surface of mitotic chromosomes, preventing AO side dimerisation. We hypothesize that epichromatin domains form nucleosome superbeads. Hydrophobic interactions stack these superbeads and align them at the nuclear envelope, while repulsing the hydrophilic LADs. The hydrophobicity of epichromatin explains its location at the surface of mitotic chromosomes and its function in mediating chromosome attachment to the restituting nuclear envelope during telophase.
Collapse
Affiliation(s)
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia.,b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Kristine Salmina
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia
| | - Turs Selga
- c Faculty of Biology, University of Latvia , Raina bulvaris 19, Riga , Latvia
| | - Hermanis Sorokins
- b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Talivaldis Freivalds
- d Institute of Kardiology and Regenerative Medicine, University of Latvia , Raina bulvaris 19, Riga , Latvia
| |
Collapse
|
8
|
Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Nat Commun 2019; 10:2301. [PMID: 31127102 PMCID: PMC6534667 DOI: 10.1038/s41467-019-10247-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Genomic DNA in eukaryotes is organized into chromatin through association with core histones to form nucleosomes, each distinguished by their DNA sequences and histone variants. Here, we used a single-chain antibody fragment (scFv) derived from the anti-nucleosome antibody mAb PL2-6 to stabilize human CENP-A nucleosome containing a native α-satellite DNA and solved its structure by the cryo-electron microscopy (cryo-EM) to 2.6 Å resolution. In comparison, the corresponding cryo-EM structure of the free CENP-A nucleosome could only reach 3.4 Å resolution. We find that scFv binds to a conserved acidic patch on the histone H2A-H2B dimer without perturbing the nucleosome structure. Our results provide an atomic resolution cryo-EM structure of a nucleosome and insight into the structure and function of the CENP-A nucleosome. The scFv approach is applicable to the structural determination of other native-like nucleosomes with distinct DNA sequences. CENP-A histone variants replace histones H3 at centromeres. Here the authors use a single-chain antibody fragment (scFv) to stabilize human CENP-A nucleosome containing a native α-satellite DNA and solved its structure by cryo-EM to 2.6 Å resolution, providing insight into the structure and function of the CENP-A nucleosome.
Collapse
|
9
|
Olins DE, Olins AL. Epichromatin and chromomeres: a 'fuzzy' perspective. Open Biol 2019; 8:rsob.180058. [PMID: 29875200 PMCID: PMC6030114 DOI: 10.1098/rsob.180058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
'Epichromatin', the surface of chromatin beneath the interphase nuclear envelope (NE) or at the surface of mitotic chromosomes, was discovered by immunostaining with a specific bivalent mouse monoclonal anti-nucleosome antibody (mAb PL2-6). 'Chromomeres', punctate chromatin particles approximately 200-300 nm in diameter, identified throughout the interphase chromatin and along mitotic chromosomes, were observed by immunostaining with the monovalent papain-derived Fab fragments of bivalent PL2-6. The specific target for PL2-6 appears to include the nucleosome acidic patch. Thus, within the epichromatin and chromomeric regions, this epitope is 'exposed'. Considering that histones possess unstructured 'tails' (i.e. intrinsically disordered peptide regions, IDPR), our perception of these chromatin regions becomes more 'fuzzy' (less defined). We suggest that epichromatin cationic tails facilitate interactions with anionic components of NE membranes. We also suggest that the unstructured histone tails (especially, histone H1 tails), with their presumed promiscuous binding, establish multivalent binding that stabilizes each chromomere as a unit of chromatin higher order structure. We propose an 'unstructured stability' hypothesis, which postulates that the stability of epichromatin and chromomeres (as well as other nuclear chromatin structures) is a consequence of the collective contributions of numerous weak histone IDPR binding interactions arising from the multivalent nucleosome, analogous to antibody avidity.
Collapse
Affiliation(s)
- Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
10
|
Ramamurthy B, Cohen S, Canales M, Coffman FD. Three-Dimensional Cellular Raman Analysis: Evidence of Highly Ordered Lipids Within Cell Nuclei. J Histochem Cytochem 2018; 66:889-902. [PMID: 30138043 DOI: 10.1369/0022155418794125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Striking levels of spatial organization exist among and within interphase cell chromosomes, raising the possibility that other nuclear molecular components may also be organized in ways that facilitate nuclear function. To further examine molecular distributions and organization within cell nuclei, we utilized Raman spectroscopy to map distributions of molecular components, with a focus on cellular lipids. Although the vast majority of cellular lipids are associated with membranes, mapping the 2870/2850 cm-1 lipid peak ratios revealed that the most highly ordered lipids within interphase cells are found within cell nuclei. This finding was seen in cells from multiple tissue types, noncancerous cells, and in cancer cell lines of different metastatic potential. These highly ordered lipids colocalize with nuclear chromatin, are present throughout the nuclear volume, and remain colocalized with chromatin through mitosis, when the nuclear envelope has dissociated. Phosphatidylinositol is a major component of the highly ordered lipids. The presence of phosphatidylinositol and other lipids in the nuclear interior is well established, but their highly ordered packing has not been reported and represents a unique finding. The molecular interactions involved in the formation and maintenance of these highly ordered lipids, and their potential effects on nuclear activities, remain to be discovered.
Collapse
Affiliation(s)
- Bhagavathi Ramamurthy
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Biology, Delaware State University, Dover, Delaware
| | - Stanley Cohen
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Frederick D Coffman
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Health Informatics and Department of Primary Care, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
11
|
Chirico G, Gansen A, Leuba SH, Olins AL, Olins DE, Smith JC, Tóth K. Jörg Langowski: his scientific legacy and the future it promises. BMC BIOPHYSICS 2018; 11:5. [PMID: 30026939 PMCID: PMC6048899 DOI: 10.1186/s13628-018-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022]
Abstract
Background With the passing of Jörg Langowski 6 May 2017 in a sailplane accident, the scientific community was deprived of a strident and effective voice for DNA and chromatin molecular and computational biophysics, for open access publishing and for the creation of effective scientific research networks. Methods Here, after reviewing some of Jörg's key research contributions and ideas, we offer through the personal remembrance of his closest collaborators, a deep analysis of the major results of his research and the future directions they have engendered. Conclusions The legacy of Jörg Langowski has been to propel a way of viewing biological function that considers living systems as dynamic and in three dimensions. This physical view of biology that he pioneered is now, finally, becoming established also because of his great effort.
Collapse
Affiliation(s)
- Giuseppe Chirico
- 1Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
| | - Alexander Gansen
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sanford H Leuba
- 3Departments of Cell Biology and Bioengineering, 2.26a UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Ada L Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Donald E Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Jeremy C Smith
- 5Oak Ridge National Laboratory, P.O. Box 2008 MS6309, Oak Ridge, TN 37831-6309 USA.,6Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| | - Katalin Tóth
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Gould TJ, Tóth K, Mücke N, Langowski J, Hakusui AS, Olins AL, Olins DE. Defining the epichromatin epitope. Nucleus 2017; 8:625-640. [PMID: 28960120 DOI: 10.1080/19491034.2017.1380141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epichromatin is identified by immunostaining fixed and permeabilized cells with particular bivalent anti-nucleosome antibodies (mAbs PL2-6 and 1H6). During interphase, epichromatin resides adjacent to the inner nuclear membrane; during mitosis, at the outer surface of mitotic chromosomes. By STED (stimulated emission depletion) microscopy, PL2-6 stained interphase epichromatin is ∼76 nm thick and quite uniform; mitotic epichromatin is more variable in thickness, exhibiting a "wrinkled" surface with an average thickness of ∼78 nm. Co-immunostaining with anti-Ki-67 demonstrates Ki-67 deposition between the PL2-6 "ridges" of mitotic epichromatin. Monovalent papain-derived Fab fragments of PL2-6 yield a strikingly different punctate "chromomeric" immunostaining pattern throughout interphase nuclei and along mitotic chromosome arms. Evidence from electrophoretic mobility shift assay (EMSA) and from analytical ultracentrifugation characterize the Fab/mononucleosome complex, supporting the concept that there are two binding sites per nucleosome. The peptide sequence of the Hv3 region (heavy chain variable region 3) of the PL2-6 antibody binding site strongly resembles other nucleosome acidic patch binding proteins (especially, LANA and CENPC), supporting that the nucleosome acidic patch is included within the epichromatin epitope. It is speculated that the interphase epichromatin epitope is "exposed" with favorable geometric arrangements for binding bivalent PL2-6 at the surface chromatin; whereas, the epitope is "hidden" within internal chromatin. Furthermore, it is suggested that the "exposed" nucleosome surface of mitotic epichromatin may play a role in post-mitotic nuclear envelope reformation.
Collapse
Affiliation(s)
- Travis J Gould
- a Department of Physics & Astronomy , Bates College , Lewiston , ME , USA
| | - Katalin Tóth
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Norbert Mücke
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Langowski
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Ada L Olins
- c Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| | - Donald E Olins
- c Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| |
Collapse
|
13
|
Teif VB, Mallm JP, Sharma T, Mark Welch DB, Rippe K, Eils R, Langowski J, Olins AL, Olins DE. Nucleosome repositioning during differentiation of a human myeloid leukemia cell line. Nucleus 2017; 8:188-204. [PMID: 28406749 PMCID: PMC5403151 DOI: 10.1080/19491034.2017.1295201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (∼1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere.
Collapse
Affiliation(s)
- Vladimir B Teif
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | | | - Tanvi Sharma
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | - David B Mark Welch
- c Josephine Bay Paul Center for Comparative Molecular Biology and Evolution , Marine Biological Laboratory , Woods Hole , MA , USA
| | - Karsten Rippe
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Roland Eils
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Langowski
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ada L Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| | - Donald E Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| |
Collapse
|
14
|
Salmina K, Huna A, Inashkina I, Belyayev A, Krigerts J, Pastova L, Vazquez-Martin A, Erenpreisa J. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus 2017; 8:205-221. [PMID: 28068183 DOI: 10.1080/19491034.2017.1279775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2-5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.
Collapse
Affiliation(s)
| | - Anda Huna
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Alexander Belyayev
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Ladislava Pastova
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | | | | |
Collapse
|
15
|
Huna A, Salmina K, Erenpreisa J, Vazquez-Martin A, Krigerts J, Inashkina I, Gerashchenko BI, Townsend PA, Cragg MS, Jackson TR. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle 2015; 14:2969-84. [PMID: 26102294 PMCID: PMC4825594 DOI: 10.1080/15384101.2015.1056948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.
Collapse
Affiliation(s)
- Anda Huna
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | | | | | | | - Jekabs Krigerts
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research and Study Center ; Riga, Latvia
| | - Bogdan I Gerashchenko
- a Latvian Biomedical Research and Study Center ; Riga, Latvia.,d R. E. Kavetsky Institute of Experimental Pathology; Oncology and Radiobiology; National Academy of Sciences of Ukraine ; Kyiv , Ukraine
| | - Paul A Townsend
- b Institute of Cancer Sciences; Manchester Cancer Research Center; University of Manchester; Manchester Academic Health Science Center ; Manchester , UK
| | - Mark S Cragg
- c Cancer Sciences Unit; University of Southampton; Faculty of Medicine; General Hospital ; Southampton , UK
| | - Thomas R Jackson
- b Institute of Cancer Sciences; Manchester Cancer Research Center; University of Manchester; Manchester Academic Health Science Center ; Manchester , UK
| |
Collapse
|
16
|
Eltsov M, Sosnovski S, Olins AL, Olins DE. ELCS in ice: cryo-electron microscopy of nuclear envelope-limited chromatin sheets. Chromosoma 2014; 123:303-12. [PMID: 24570264 DOI: 10.1007/s00412-014-0454-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/01/2022]
Abstract
Nuclear envelope-limited chromatin sheets (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended sheets within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission electron microscopy, resemble a sandwich of apposed nuclear envelopes separated by ∼30 nm, containing a layer of parallel chromatin fibers. In this study, the ultrastructure of ELCS was compared by three different methods: (1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining, (2) high-pressure freezing/freeze substitution into plastic/sectioning and staining, and (3) high-pressure freezing/cryo-sectioning/cryo-electron microscopy. ELCS could be clearly visualized by all three methods and, consequently, must exist in vivo and are not fixation artifacts. The ∼30-nm chromatin fibers could only be observed following aldehyde fixation; none were seen in cryo-sections. Electron microscopic tomography tangential views of aldehyde-fixed ELCS suggested an ordering of the separate chromatin fibers adjacent to the nuclear envelope. Possible mechanisms of this chromatin ordering are discussed.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany,
| | | | | | | |
Collapse
|
17
|
Epichromatin is conserved in Toxoplasma gondii and labels the exterior parasite chromatin throughout the cell cycle. Parasitology 2013; 140:1104-10. [PMID: 23701822 DOI: 10.1017/s0031182013000504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an apicomplexan intracellular protozoan parasite responsible for toxoplasmosis, a disease with considerable medical and economic impact worldwide. Toxoplasma gondii cells never lose the nuclear envelope and their chromosomes do not condense. Here, we tested the murine monoclonal antibody PL2-6, which labels epichromatin (a conformational chromatin epitope based on histones H2A and H2B complexed with DNA), in T. gondii cultured in human fibroblasts. This epitope is present at the exterior chromatin surface of interphase nuclei and on the periphery of mitotic chromosomes in higher eukaryotes. PL2-6 reacted with T. gondii H2A and H2B histones in Western blot (WB) assays. In addition, the antibody reacted with the nuclear fraction of tachyzoites, as a single band coincident with H2B histone. In the T. gondii tachyzoite stage, PL2-6 also had peripheral nuclear localization, as observed by epifluorescence/confocal microscopy and immunoelectron microscopy. Confocal analysis showed that epichromatin is slightly polarized to one face of the parasite exterior chromatin surface. In replicating tachyzoites, PL2-6 also labels the exterior chromatin surface, covering the face of both segregating nuclei, facing the plasma membrane of the mother cell. The possible role of epichromatin in T. gondii is discussed.
Collapse
|
18
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
19
|
Prudovsky I, Vary CPH, Markaki Y, Olins AL, Olins DE. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes. Nucleus 2012; 3:200-10. [PMID: 22555604 PMCID: PMC3383575 DOI: 10.4161/nucl.19662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | | | | | | | |
Collapse
|