1
|
Gutierrez-Morton E, Wang Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. CELL INSIGHT 2024; 3:100199. [PMID: 39399482 PMCID: PMC11467568 DOI: 10.1016/j.cellin.2024.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
As a type of protein post-translational modification, SUMOylation is the process that attaches a small ubiquitin-like modifier (SUMO) to lysine residues of protein substrates. Not only do SUMO and ubiquitin exhibit structure similarity, but the enzymatic cascades for SUMOylation and ubiquitination are also similar. It is well established that protein ubiquitination triggers proteasomal degradation, but the function of SUMOylation remains poorly understood compared to ubiquitination. Recent studies reveal the role of SUMOylation in regulating protein localization, stability, and interaction networks. SUMO can be covalently attached to substrates either as an individual monomer (monoSUMOylation) or as a polymeric SUMO chain (polySUMOylation). Strikingly, mono- and polySUMOylation likely play distinct roles in protein subcellular localization and the assembly/disassembly of biomolecular condensates, which are membraneless cellular compartments with concentrated biomolecules. In this review, we summarize the recent advances in the understanding of the function and regulation of SUMOylation, which could reveal potential therapeutic targets in disease pathogenesis.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
2
|
Dönig J, Mende H, Davila Gallesio J, Wagner K, Hotz P, Schunck K, Piller T, Hölper S, Uhan S, Kaulich M, Wirth M, Keller U, Tascher G, Bohnsack KE, Müller S. Characterization of nucleolar SUMO isopeptidases unveils a general p53-independent checkpoint of impaired ribosome biogenesis. Nat Commun 2023; 14:8121. [PMID: 38065954 PMCID: PMC10709353 DOI: 10.1038/s41467-023-43751-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.
Collapse
Affiliation(s)
- Judith Dönig
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Hannah Mende
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Paul Hotz
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Kathrin Schunck
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- PharmBioTec gGmbH, Schiffweiler, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Sara Uhan
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Lett KE, McLaurin DM, Tucker SK, Hebert MD. The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity. FRONTIERS IN RNA RESEARCH 2023; 1:1197990. [PMID: 39703804 PMCID: PMC11656447 DOI: 10.3389/frnar.2023.1197990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cajal bodies (CBs) are subnuclear domains that contribute to the biogenesis of several different classes of ribonucleoproteins (RNPs) including small nuclear RNPs. Only some cell types contain abundant CBs, such as neuronal cells and skeletal muscle, but CBs are invariant features of transformed cells. In contrast, coilin, the CB marker protein, is a ubiquitously expressed nuclear protein but the function of coilin in cell types that lack CBs is not well understood. We have previously shown that coilin promotes microRNA biogenesis by promoting phosphorylation of DGCR8, a component of the Microprocessor. Here we identify 7 additional residues of DGCR8 with decreased phosphorylation upon coilin knockdown. In addition to phosphorylation, the addition of a small ubiquitin-like modifier (SUMO) to DGCR8 also increases its stability. Because of coilin's role in the promotion of DGCR8 phosphorylation, we investigated whether coilin is involved in DGCR8 SUMOylation. We show that coilin knockdown results in global decrease of protein SUMOylation, including decreased DGCR8 and Sp100 (a PML body client protein) SUMOylation and decreased SMN expression. Alternatively, we found that coilin expression rescued Sp100 SUMOylation and increased DGCR8 and SMN levels in a coilin knockout cell line. Furthermore, we found that coilin facilitates RanGAP1 SUMOylation, interacts directly with components of the SUMOylation machinery (Ubc9 and SUMO2), and itself is SUMOylated in vitro and in vivo. In summary, we have identified coilin as a regulator of DGCR8 phosphorylation and a promotor of protein SUMOylation with SUMO E3 ligase-like activity.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
4
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
5
|
SUMOylation- and GAR1-Dependent Regulation of Dyskerin Nuclear and Subnuclear Localization. Mol Cell Biol 2021; 41:MCB.00464-20. [PMID: 33526451 DOI: 10.1128/mcb.00464-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important although incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal nuclear/nucleolar localization signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wild-type dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3 fusion construct can drive nuclear accumulation of this variant and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.
Collapse
|
6
|
Giannini M, Bayona-Feliu A, Sproviero D, Barroso SI, Cereda C, Aguilera A. TDP-43 mutations link Amyotrophic Lateral Sclerosis with R-loop homeostasis and R loop-mediated DNA damage. PLoS Genet 2020; 16:e1009260. [PMID: 33301444 PMCID: PMC7755276 DOI: 10.1371/journal.pgen.1009260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/22/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
TDP-43 is a DNA and RNA binding protein involved in RNA processing and with structural resemblance to heterogeneous ribonucleoproteins (hnRNPs), whose depletion sensitizes neurons to double strand DNA breaks (DSBs). Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, in which 97% of patients are familial and sporadic cases associated with TDP-43 proteinopathies and conditions clearing TDP-43 from the nucleus, but we know little about the molecular basis of the disease. After showing with the non-neuronal model of HeLa cells that TDP-43 depletion increases R loops and associated genome instability, we prove that mislocalization of mutated TDP-43 (A382T) in transfected neuronal SH-SY5Y and lymphoblastoid cell lines (LCLs) from an ALS patient cause R-loop accumulation, R loop-dependent increased DSBs and Fanconi Anemia repair centers. These results uncover a new role of TDP-43 in the control of co-transcriptional R loops and the maintenance of genome integrity by preventing harmful R-loop accumulation. Our findings thus link TDP-43 pathology to increased R loops and R loop-mediated DNA damage opening the possibility that R-loop modulation in TDP-43-defective cells might help develop ALS therapies. Amyotrophic Lateral Sclerosis (ALS) is an adult onset, progressive neurodegenerative disease, caused by the selective loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. The nuclear TDP-43 RNA binding protein, is encoded by a major gene for ALS susceptibility whose mutations are found in 3% of familial and 2% of sporadic ALS cases. Thanks to its ability to recognize DNA and RNA, TDP-43 is involved in different steps of mRNA metabolism and in several mechanisms of genome integrity. This, together with the fact that R loops or DNA-RNA hybrids are a common source of genome instability, prompted us to investigate whether TDP-43 deficiency has any role in R loop homeostasis that could explain previously described DNA damage response defects of ALS cells. We show that TDP-43 plays a role in preventing R loop-accumulation and associated genome instability in neuronal and non-neuronal cells, as well as in patient cell lines. Thus, our study opens the possibility that R loop-modulation in TDP-43-defective cells might help develop ALS therapies.
Collapse
Affiliation(s)
- Marta Giannini
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Aleix Bayona-Feliu
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Daisy Sproviero
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Sonia I. Barroso
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- * E-mail: (CC); (AA)
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- * E-mail: (CC); (AA)
| |
Collapse
|
7
|
Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG, Aebersold R. Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry. Mol Cell Proteomics 2019; 18:1454-1467. [PMID: 30975897 PMCID: PMC6601215 DOI: 10.1074/mcp.tir119.001431] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Physiological processes in multicellular organisms depend on the function and interactions of specialized cell types operating in context. Some of these cell types are rare and thus obtainable only in minute quantities. For example, tissue-specific stem and progenitor cells are numerically scarce, but functionally highly relevant, and fulfill critical roles in development, tissue maintenance, and disease. Whereas low numbers of cells are routinely analyzed by genomics and transcriptomics, corresponding proteomic analyses have so far not been possible due to methodological limitations. Here we describe a sensitive and robust quantitative technique based on data-independent acquisition mass spectrometry. We quantified the proteome of sets of 25,000 human hematopoietic stem/multipotent progenitor cells (HSC/MPP) and three committed progenitor cell subpopulations of the myeloid differentiation pathway (common myeloid progenitors, megakaryocyte-erythrocyte progenitors, and granulocyte-macrophage progenitors), isolated by fluorescence-activated cell sorting from five healthy donors. On average, 5,851 protein groups were identified per sample. A subset of 4,131 stringently filtered protein groups was quantitatively compared across the 20 samples, defining unique signatures for each subpopulation. A comparison of proteomic and transcriptomic profiles indicated HSC/MPP-specific divergent regulation of biochemical functions such as telomerase maintenance and quiescence-inducing enzymes, including isocitrate dehydrogenases. These are essential for maintaining stemness and were detected at proteome, but not transcriptome, level. The method is equally applicable to almost any rare cell type, including healthy and cancer stem cells or physiologically and pathologically infiltrating cell populations. It thus provides essential new information toward the detailed biochemical understanding of cell development and functionality in health and disease.
Collapse
Affiliation(s)
- Sabine Amon
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabienne Meier-Abt
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ludovic C Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Slavica Dimitrieva
- ¶Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | | | - Markus G Manz
- §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; ‖Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules 2015; 5:1441-66. [PMID: 26184334 PMCID: PMC4598758 DOI: 10.3390/biom5031441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes.
Collapse
Affiliation(s)
- Rebecca Bish
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Nerea Cuevas-Polo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Dolores Hambardzumyan
- The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mathias Munschauer
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Markus Landthaler
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
9
|
Butler MG, Wang K, Marshall JD, Naggert JK, Rethmeyer JA, Gunewardena SS, Manzardo AM. Coding and noncoding expression patterns associated with rare obesity-related disorders: Prader-Willi and Alström syndromes. ACTA ACUST UNITED AC 2015; 2015:53-75. [PMID: 25705109 DOI: 10.2147/agg.s74598] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is accompanied by hyperphagia in several classical genetic obesity-related syndromes that are rare, including Prader-Willi syndrome (PWS) and Alström syndrome (ALMS). We compared coding and noncoding gene expression in adult males with PWS, ALMS, and nonsyndromic obesity relative to nonobese males using readily available lymphoblastoid cells to identify disease-specific molecular patterns and disturbed mechanisms in obesity. We found 231 genes upregulated in ALMS compared with nonobese males, but no genes were found to be upregulated in obese or PWS males and 124 genes were downregulated in ALMS. The metallothionein gene (MT1X) was significantly downregulated in ALMS, in common with obese males. Only the complex SNRPN locus was disturbed (downregulated) in PWS along with several downregulated small nucleolar RNAs (snoRNAs) in the 15q11-q13 region (SNORD116, SNORD109B, SNORD109A, SNORD107). Eleven upregulated and ten downregulated snoRNAs targeting multiple genes impacting rRNA processing, developmental pathways, and associated diseases were found in ALMS. Fifty-two miRNAs associated with multiple, overlapping gene expression disturbances were upregulated in ALMS, and four were shared with obese males but not PWS males. For example, seven passenger strand microRNAs (miRNAs) (miR-93*, miR-373*, miR-29b-2*, miR-30c-1*, miR27a*, miR27b*, and miR-149*) were disturbed in association with six separate downregulated target genes (CD68, FAM102A, MXI1, MYO1D, TP53INP1, and ZRANB1). Cell cycle (eg, PPP3CA), transcription (eg, POLE2), and development may be impacted by upregulated genes in ALMS, while downregulated genes were found to be involved with metabolic processes (eg, FABP3), immune responses (eg, IL32), and cell signaling (eg, IL1B). The high number of gene and noncoding RNA disturbances in ALMS contrast with observations in PWS and males with nonsyndromic obesity and may reflect the progressing multiorgan pathology of the ALMS disease process.
Collapse
Affiliation(s)
- Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA ; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kun Wang
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Jasmine A Rethmeyer
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumedha S Gunewardena
- Department of Biostatistics, Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 2014; 15:1181-91. [PMID: 25236368 DOI: 10.1002/pmic.201400298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation is a posttranslational protein modification whereby SUMOs are conjugated to lysine residues of target proteins. SUMO conjugation can alter the activity, stability, and function of target proteins, and thereby modulate almost all major cellular pathways. Many diseases are associated with SUMO conjugation, including heart failure, arthritis, cancer, degenerative diseases, and brain ischemia/stroke. It is, therefore, of major interest to characterize the SUMO-modified proteome regulated by these disorders. SUMO proteomics analysis is hampered by low levels of SUMOylated proteins. Several strategies have, therefore, been developed to enrich SUMOylated proteins from cell/tissue extracts. These include proteomics analysis on cells expressing epitope-tagged SUMO isoforms, use of monoclonal SUMO antibodies for immunoprecipitation and epitope-specific peptides for elution, and affinity purification with peptides containing SUMO interaction motifs to specifically enrich polySUMOylated proteins. Recently, two mouse models were generated and characterized that express tagged SUMO isoforms, and allow purification of SUMOylated proteins from complex organ extracts. Ultimately, these new analytical tools will help to decipher the SUMO-modified proteome regulated by various human diseases, and thereby, identify new targets for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Wei Yang
- Molecular Neurobiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
11
|
Jentsch S, Psakhye I. Control of Nuclear Activities by Substrate-Selective and Protein-Group SUMOylation. Annu Rev Genet 2013; 47:167-86. [DOI: 10.1146/annurev-genet-111212-133453] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Ivan Psakhye
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
12
|
Filosa G, Barabino SML, Bachi A. Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Neuromolecular Med 2013; 15:661-76. [PMID: 23979992 DOI: 10.1007/s12017-013-8256-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/08/2013] [Indexed: 01/09/2023]
Abstract
SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.
Collapse
Affiliation(s)
- Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | |
Collapse
|
13
|
The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 2013; 122:475-85. [DOI: 10.1007/s00412-013-0429-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
14
|
Ge J, Yu YT. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38:210-8. [PMID: 23391857 PMCID: PMC3608706 DOI: 10.1016/j.tibs.2013.01.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/22/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
Abstract
Pseudouridine is the most abundant post-transcriptionally modified nucleotide in various stable RNAs of all organisms. Pseudouridine is derived from uridine via base-specific isomerization, resulting in an extra hydrogen-bond donor that distinguishes it from other nucleotides. In eukaryotes, uridine-to-pseudouridine isomerization is catalyzed primarily by box H/ACA RNPs, ribonucleoproteins that act as pseudouridylases. When introduced into RNA, pseudouridine contributes significantly to RNA-mediated cellular processes. It was recently discovered that pseudouridylation can be induced by stress, suggesting a regulatory role for pseudouridine. It has also been reported that pseudouridine can be artificially introduced into mRNA by box H/ACA RNPs and that such introduction can mediate nonsense-to-sense codon conversion, thus demonstrating a new means of generating coding or protein diversity.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
15
|
Abstract
The nucleolus is a distinct subnuclear compartment known as the site for ribosome biogenesis in eukaryotes. Consequently, the nucleolus is also proposed to function in cell-cycle control, stress sensing and senescence, as well as in viral infection. An increasing number of viral proteins have been found to localize to the nucleolus. In this article, we review the current understanding of the functions of the nucleolus, the molecular mechanism of cellular and viral protein targeting to the nucleolus and the functional roles of the nucleolus during viral infection with a specific focus on the herpesvirus family.
Collapse
Affiliation(s)
- Liwen Ni
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Shuai Wang
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Chunfu Zheng
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|