1
|
Shaban K, Sauty SM, Fisher A, Cheng A, Yankulov K. Evaluation of drug-free methods for the detection of gene silencing in Saccharomyces cerevisiae. Biochem Cell Biol 2023; 101:125-130. [PMID: 36661263 DOI: 10.1139/bcb-2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple studies in Saccharomyces cerevisiae have measured the levels of gene silencing by inserting the URA3 gene at various loci and selecting against URA3-expressing cells by 5-flouroorotic acid (5-FOA). However, 5-FOA affects the cellular pools of dNTPs and can produce side effects. To circumvent this issue, we and others have introduced drug-free techniques to detect silent and active gene states. In this study, we compared three drug-free methods based on the expression of fluorescent reporters in the VIIL telomere of S. cerevisiae. Our results point out that only one of these methods is suitable for large-scale drug-free analyses of gene silencing.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Pasquier E, Wellinger RJ. In vivo chromatin organization on native yeast telomeric regions is independent of a cis-telomere loopback conformation. Epigenetics Chromatin 2020; 13:23. [PMID: 32443982 PMCID: PMC7243337 DOI: 10.1186/s13072-020-00344-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background DNA packaging into chromatin regulates all DNA-related processes and at chromosomal ends could affect both essential functions of telomeres: protection against DNA damage response and telomere replication. Despite this primordial role of chromatin, little is known about chromatin organization, and in particular about nucleosome positioning on unmodified subtelomere–telomere junctions in Saccharomyces cerevisiae. Results By ChEC experiments and indirect end-labeling, we characterized nucleosome positioning as well as specialized protein–DNA associations on most subtelomere–telomere junctions present in budding yeast. The results show that there is a relatively large nucleosome-free region at chromosome ends. Despite the absence of sequence homologies between the two major classes of subtelomere–telomere junctions (i.e.: Y’-telomeres and X-telomeres), all analyzed subtelomere–telomere junctions show a terminal nucleosome-free region just distally from the known Rap1-covered telomeric repeats. Moreover, previous evidence suggested a telomeric chromatin fold-back structure onto subtelomeric areas that supposedly was implicated in chromosome end protection. The in vivo ChEC method used herein in conjunction with several proteins in a natural context revealed no evidence for such structures in bulk chromatin. Conclusions Our study allows a structural definition of the chromatin found at chromosome ends in budding yeast. This definition, derived with direct in vivo approaches, includes a terminal area that is free of nucleosomes, certain positioned nucleosomes and conserved DNA-bound protein complexes. This organization of subtelomeric and telomeric areas however does not include a telomeric cis-loopback conformation. We propose that the observations on such fold-back structures may report rare and/or transient associations and not stable or constitutive structures.
Collapse
Affiliation(s)
- Emeline Pasquier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Cancer Research Pavilion, Rm 3025, 3201, rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Cancer Research Pavilion, Rm 3025, 3201, rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
3
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
4
|
Li W, Yi J, Agbu P, Zhou Z, Kelley RL, Kallgren S, Jia S, He X. Replication stress affects the fidelity of nucleosome-mediated epigenetic inheritance. PLoS Genet 2017; 13:e1006900. [PMID: 28749973 PMCID: PMC5549764 DOI: 10.1371/journal.pgen.1006900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The fidelity of epigenetic inheritance or, the precision by which epigenetic information is passed along, is an essential parameter for measuring the effectiveness of the process. How the precision of the process is achieved or modulated, however, remains largely elusive. We have performed quantitative measurement of epigenetic fidelity, using position effect variegation (PEV) in Schizosaccharomyces pombe as readout, to explore whether replication perturbation affects nucleosome-mediated epigenetic inheritance. We show that replication stresses, due to either hydroxyurea treatment or various forms of genetic lesions of the replication machinery, reduce the inheritance accuracy of CENP-A/Cnp1 nucleosome positioning within centromere. Mechanistically, we demonstrate that excessive formation of single-stranded DNA, a common molecular abnormality under these conditions, might have correlation with the reduction in fidelity of centromeric chromatin duplication. Furthermore, we show that replication stress broadly changes chromatin structure at various loci in the genome, such as telomere heterochromatin expanding and mating type locus heterochromatin spreading out of the boundaries. Interestingly, the levels of inheritable expanding at sub-telomeric heterochromatin regions are highly variable among independent cell populations. Finally, we show that HU treatment of the multi-cellular organisms C. elegans and D. melanogaster affects epigenetically programmed development and PEV, illustrating the evolutionary conservation of the phenomenon. Replication stress, in addition to its demonstrated role in genetic instability, promotes variable epigenetic instability throughout the epigenome. In this study, we found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Using Position Effect Variegation (PEV) in centromere as an indicator of chromatin epigenetic stability, we quantified the precision of nucleosomal inheritance and found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Further analysis of genome-wide heterochromatin distribution showed that replication stresses affect chromatin structure by expanding of heterochromatin with locus specificity. Mechanistically, we provide evidence suggesting that excessive formation of single-stranded DNA might have correlation with the reduction in fidelity of centromeric chromatin duplication. Finally, we demonstrated replication stress perturb the development process by reducing the fidelity of chromatin organization duplication in fruit fly and worm, illustrating the broadness and the evolutionary conservation of the phenomenon. Together, our results shed light on the importance of replication stresses cause epigenetic instability in addition to genetic stability.
Collapse
Affiliation(s)
- Wenzhu Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pamela Agbu
- Department of Biochemistry and Molecular Biology
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology
| | - Richard L. Kelley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Scott Kallgren
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
5
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|
6
|
Jeffery DCB, Wyse BA, Rehman MA, Brown GW, You Z, Oshidari R, Masai H, Yankulov KY. Analysis of epigenetic stability and conversions in Saccharomyces cerevisiae reveals a novel role of CAF-I in position-effect variegation. Nucleic Acids Res 2013; 41:8475-88. [PMID: 23863839 PMCID: PMC3794585 DOI: 10.1093/nar/gkt623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Position-effect variegation (PEV) phenotypes are characterized by the robust multigenerational repression of a gene located at a certain locus (often called gene silencing) and occasional conversions to fully active state. Consequently, the active state then persists with occasional conversions to the repressed state. These effects are mediated by the establishment and maintenance of heterochromatin or euchromatin structures, respectively. In this study, we have addressed an important but often neglected aspect of PEV: the frequency of conversions at such loci. We have developed a model and have projected various PEV scenarios based on various rates of conversions. We have also enhanced two existing assays for gene silencing in Saccharomyces cerevisiae to measure the rate of switches from repressed to active state and vice versa. We tested the validity of our methodology in Δsir1 cells and in several mutants with defects in gene silencing. The assays have revealed that the histone chaperone Chromatin Assembly Factor I is involved in the control of epigenetic conversions. Together, our model and assays provide a comprehensive methodology for further investigation of epigenetic stability and position effects.
Collapse
Affiliation(s)
- Daniel C B Jeffery
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada and Department of Genome Medicine, Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu TB, Wang Y, Baker GM, Fahmy H, Jiang L, Xue C. The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS One 2013; 8:e64239. [PMID: 23691177 PMCID: PMC3653957 DOI: 10.1371/journal.pone.0064239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/08/2013] [Indexed: 01/14/2023] Open
Abstract
Cryptococcus is a major fungal pathogen that frequently causes systemic infection in patients with compromised immunity. Glucose, an important signal molecule and the preferred carbon source for Cryptococcus, plays a critical role in fungal development and virulence. Cryptococcus contains more than 50 genes sharing high sequence homology with hexose transporters in Saccharomyces cerevisiae. However, there is no report on their function in glucose sensing or transport. In this study, we investigated two hexose transporter-like proteins (Hxs1 and Hxs2) in Cryptococcus that share the highest sequence identity with the glucose sensors Snf3 and Rgt2 in S. cerevisiae. The expression of HXS1 is repressed by high glucose, while the HXS2 expression is not regulated by glucose. Functional studies showed that Hxs1 is required for fungal resistance to oxidative stress and fungal virulence. The hxs1Δ mutant exhibited a significant reduction in glucose uptake activity, indicating that Hxs1 is required for glucose uptake. Heterologous expression of Cryptococcus HXS1 rendered the S. cerevisiae mutant lacking all 20 hexose transporters a high glucose uptake activity, demonstrating that Hxs1 functions as a glucose transporter. Heterologous expression of HXS1 in the snf3Δ rgt2Δ double mutant did not complement its growth in YPD medium containing the respiration inhibitor antimycin A, suggesting that Hxs1 may not function as a glucose sensor. Taken together, our results demonstrate that Hxs1 is a high-affinity glucose transporter and required for fungal virulence.
Collapse
Affiliation(s)
- Tong-Bao Liu
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Yina Wang
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- Tianjing Medical University, Tianjing, China
| | - Gregory M. Baker
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Hany Fahmy
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chaoyang Xue
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| |
Collapse
|
8
|
Chisamore-Robert P, Peeters S, Shostak K, Yankulov K. Directional telomeric silencing and lack of canonical B1 elements in two silencer Autonomously Replicating Sequences in S. cerevisiae. BMC Mol Biol 2012; 13:34. [PMID: 23157664 PMCID: PMC3545912 DOI: 10.1186/1471-2199-13-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Autonomously Replicating Sequences (ARS) in S. cerevisiae serve as origins of DNA replication or as components of cis-acting silencers, which impose positional repression at the mating type loci and at the telomeres. Both types of ARS can act as replicators or silencers, however it is not clear how these quite diverse functions are executed. It is believed that all ARS contain a core module of an essential ARS Consensus Sequence (ACS) and a non-essential B1 element. Results We have tested how the B1 elements contribute to the silencer and replicator function of ARS. We report that the ACS-B1 orientation of ARS has a profound effect on the levels of gene silencing at telomeres. We also report that the destruction of the canonical B1 elements in two silencer ARS (ARS317 and ARS319) has no effect on their silencer and replicator activity. Conclusions The observed orientation effects on gene silencing suggest that ARSs can act as both proto-silencers and as insulator elements. In addition, the lack of B1 suggests that the ACS-B1 module could be different in silencer and replicator ARS.
Collapse
|