1
|
Diez L, Wegmann S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front Neurol 2020; 11:1056. [PMID: 33101165 PMCID: PMC7546323 DOI: 10.3389/fneur.2020.01056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|
2
|
Pérez-Garrastachu M, Arluzea J, Andrade R, Díez-Torre A, Urtizberea M, Silió M, Aréchaga J. Nucleoporins redistribute inside the nucleus after cell cycle arrest induced by histone deacetylases inhibition. Nucleus 2017; 8:515-533. [PMID: 28696859 DOI: 10.1080/19491034.2017.1320001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nucleoporins are the main components of the nuclear-pore complex (NPC) and were initially considered as mere structural elements embedded in the nuclear envelope, being responsible for nucleocytoplasmic transport. Nevertheless, several recent scientific reports have revealed that some nucleoporins participate in nuclear processes such as transcription, replication, DNA repair and chromosome segregation. Thus, the interaction of NPCs with chromatin could modulate the distribution of chromosome territories relying on the epigenetic state of DNA. In particular, the nuclear basket proteins Tpr and Nup153, and the FG-nucleoporin Nup98 seem to play key roles in all these novel functions. In this work, histone deacetylase inhibitors (HDACi) were used to induce a hyperacetylated state of chromatin and the behavior of the mentioned nucleoporins was studied. Our results show that, after HDACi treatment, Tpr, Nup153 and Nup98 are translocated from the nuclear pore toward the interior of the cell nucleus, accumulating as intranuclear nucleoporin clusters. These transitory structures are highly dynamic, and are mainly present in the population of cells arrested at the G0/G1 phase of the cell cycle. Our results indicate that the redistribution of these nucleoporins from the nuclear envelope to the nuclear interior may be implicated in the early events of cell cycle initialization, particularly during the G1 phase transition.
Collapse
Affiliation(s)
- Miguel Pérez-Garrastachu
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Jon Arluzea
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain.,b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Ricardo Andrade
- b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Alejandro Díez-Torre
- b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Marta Urtizberea
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Margarita Silió
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Juan Aréchaga
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain.,b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| |
Collapse
|
3
|
Tamura K, Fukao Y, Hatsugai N, Katagiri F, Hara-Nishimura I. Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana. Nucleus 2017; 8:301-311. [PMID: 28071978 DOI: 10.1080/19491034.2017.1279774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The nuclear pore complex (NPC) comprises more than 30 nucleoporins (Nups). NPC mediates macromolecular trafficking between the nucleoplasm and the cytoplasm, but specific roles of individual Nups are poorly understood in higher plants. Here, we show that the novel nucleoporin unique to angiosperm plants (designated as Nup82) functions in a salicylic acid-dependent defense in a redundant manner with Nup136, which is a component of the nuclear basket in the NPC. Arabidopsis thaliana Nup82 had a similar amino acid sequence to the N-terminal half of Nup136 and a Nup82-GFP fusion was localized on the nuclear envelope. Immunoprecipitation and bimolecular fluorescence complementation analyses revealed that Nup82 interacts with the NPC components Nup136 and RAE1. The double knockout mutant nup82 nup136 showed severe growth defects, while the single knockout mutant nup82 did not, suggesting that Nup82 functions redundantly with Nup136. nup82 nup136 impaired benzothiadiazole (an analog of salicylic acid)-induced resistance to the virulent bacteria Pseudomonas syringae pv. tomato DC3000. Furthermore, transcriptome analysis of nup82 nup136 indicates that deficiency of Nup82 and Nup136 causes noticeable downregulation of immune-related genes. These results suggest that Nup82 and Nup136 are redundantly involved in transcriptional regulation of salicylic acid-responsive genes through nuclear transport of signaling molecules.
Collapse
Affiliation(s)
- Kentaro Tamura
- a Department of Botany , Graduate School of Science, Kyoto University , Kyoto , Japan
| | - Yoichiro Fukao
- b Department of Bioinformatics , College of Life Sciences, Ritsumeikan University , Shiga , Japan
| | - Noriyuki Hatsugai
- c Department of Plant Biology , Microbial and Plant Genomics Institute, University of Minnesota , St. Paul , MN , USA
| | - Fumiaki Katagiri
- c Department of Plant Biology , Microbial and Plant Genomics Institute, University of Minnesota , St. Paul , MN , USA
| | - Ikuko Hara-Nishimura
- a Department of Botany , Graduate School of Science, Kyoto University , Kyoto , Japan
| |
Collapse
|
4
|
Smith S, Galinha C, Desset S, Tolmie F, Evans D, Tatout C, Graumann K. Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 2015; 6:471-8. [PMID: 26652762 DOI: 10.1080/19491034.2015.1126028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.
Collapse
Affiliation(s)
- Sarah Smith
- a Department of Biological and Medical Sciences ; Faculty of Health and Life Sciences; Oxford Brookes University ; Headington , Oxford , UK
| | - Carla Galinha
- a Department of Biological and Medical Sciences ; Faculty of Health and Life Sciences; Oxford Brookes University ; Headington , Oxford , UK
| | - Sophie Desset
- b UMR CNRS 6247; INSERM U931 GReD Clermont Universités 24 ; Aubiere , France
| | - Frances Tolmie
- a Department of Biological and Medical Sciences ; Faculty of Health and Life Sciences; Oxford Brookes University ; Headington , Oxford , UK
| | - David Evans
- a Department of Biological and Medical Sciences ; Faculty of Health and Life Sciences; Oxford Brookes University ; Headington , Oxford , UK
| | - Christophe Tatout
- b UMR CNRS 6247; INSERM U931 GReD Clermont Universités 24 ; Aubiere , France
| | - Katja Graumann
- a Department of Biological and Medical Sciences ; Faculty of Health and Life Sciences; Oxford Brookes University ; Headington , Oxford , UK
| |
Collapse
|
5
|
Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ, Promponas VJ, Ouzounis CA. Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep 2014; 4:4655. [PMID: 24722254 PMCID: PMC3983603 DOI: 10.1038/srep04655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence for the involvement of Y-complex nucleoporins (Y-Nups) in cellular processes beyond the inner core of nuclear pores of eukaryotes. To comprehensively assess the range of possible functions of Y-Nups, we delimit their structural and functional properties by high-specificity sequence profiles and tissue-specific expression patterns. Our analysis establishes the presence of Y-Nups across eukaryotes with novel composite domain architectures, supporting new moonlighting functions in DNA repair, RNA processing, signaling and mitotic control. Y-Nups associated with a select subset of the discovered domains are found to be under tight coordinated regulation across diverse human and mouse cell types and tissues, strongly implying that they function in conjunction with the nuclear pore. Collectively, our results unearth an expanded network of Y-Nup interactions, thus supporting the emerging view of the Y-complex as a dynamic protein assembly with diverse functional roles in the cell.
Collapse
Affiliation(s)
- Katerina R Katsani
- Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece
| | - Manuel Irimia
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Christos Karapiperis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Christos A Ouzounis
- 1] Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada [2] Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus [3] Institute of Applied Biosciences, Centre for Research & Technology, PO Box 361, GR-57001 Thessalonica, Greece [4]
| |
Collapse
|