1
|
Thiam F, Charpilienne A, Poncet D, Kohli E, Basset C. B subunits of cholera toxin and thermolabile enterotoxin of Escherichia coli have similar adjuvant effect as whole molecules on rotavirus 2/6-VLP specific antibody responses and induce a Th17-like response after intrarectal immunization. Microb Pathog 2015; 89:27-34. [PMID: 26318874 DOI: 10.1016/j.micpath.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to evaluate the adjuvant effect of the B subunits of cholera toxin (CT) and the thermolabile enterotoxin of Escherichia coli (LT) by the intrarectal route of immunization and compare them to the whole molecules CT and LT-R192G, a non toxic mutant of LT, using 2/6-VLP as an antigen, in mice. All molecules induced similar antigen specific antibody titers in serum and feces, whereas different T cell profiles were observed. CTB and LTB, conversely to CT and LT-R192G, did not induce detectable production of IL-2 by antigen specific T cells. Moreover, CTB, conversely to LT-R192G, CT and LTB, did not induce antigen specific CD4+CD25+Foxp3- and Foxp3+ T cells, thus showing different effects between the B subunits themselves. However, all molecules induced an antigen specific Th17 response. In conclusion, B subunits are potent adjuvants on B cell responses by the intrarectal route. Although their impact on T cell responses are different, all molecules induce a 2/6-VLP-specific Th17 T cell response that may play a major role in helping B cell responses and thus in adjuvanticity and protection.
Collapse
Affiliation(s)
- Fatou Thiam
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France
| | - Annie Charpilienne
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France
| | - Didier Poncet
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France
| | - Evelyne Kohli
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France
| | - Christelle Basset
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
2
|
Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 2:e23803. [PMID: 23734328 PMCID: PMC3654598 DOI: 10.4161/onci.23803] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
The foundation of modern vaccinology dates back to the 1790s, when the English physician Edward Jenner uncovered the tremendous medical potential of prophylactic vaccination. Jenner’s work ignited a wave of nationwide vaccination campaigns abating the incidence of multiple life-threatening infectious diseases and culminating with the eradication of natural smallpox virus, which was definitively certified by the WHO in 1980. The possibility of using vaccines against cancer was first proposed at the end of the 19th century by Paul Ehrlich and William Coley. However, it was not until the 1990s that such a hypothesis began to be intensively investigated, following the realization that the immune system is not completely unresponsive to tumors and that neoplastic cells express immunogenic tumor-associated antigens (TAAs). Nowadays, anticancer vaccines are rapidly moving from the bench to the bedside, and a few prophylactic and therapeutic preparations have already been approved by FDA for use in humans. In this setting, one interesting approach is constituted by DNA vaccines, i.e., TAA-encoding circularized DNA constructs, often of bacterial origin, that are delivered to patients as such or by means of specific vectors, including (but not limited to) liposomal preparations, nanoparticles, bacteria and viruses. The administration of DNA vaccines is most often performed via the intramuscular or subcutaneous route and is expected to cause (1) the endogenous synthesis of the TAA by myocytes and/or resident antigen-presenting cells; (2) the presentation of TAA-derived peptides on the cell surface, in association with MHC class I molecules; and (3) the activation of potentially therapeutic tumor-specific immune responses. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating DNA vaccines as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; INSERM; U848; Villejuif, France ; INSERM; U1015 labelisée par la Ligue Nationale contre le Cancer; CICBT507; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185. [PMID: 24800178 PMCID: PMC4008456 DOI: 10.4161/onci.28185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
4
|
Intravaginal and subcutaneous immunization induced vaccine specific CD8 T cells and tumor regression in the bladder. J Urol 2013; 191:814-22. [PMID: 23954582 DOI: 10.1016/j.juro.2013.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE Vaccines targeting tumor associated antigens are in development for bladder cancer. Most of these cancers are nonmuscle invasive at diagnosis and confined in the mucosa and submucosa. However, to our knowledge how vaccination may induce the regression of tumors at such mucosal sites has not been examined previously. We compared different immunization routes for the ability to induce vaccine specific antitumor CD8 T cells in the bladder and bladder tumor regression in mice. MATERIALS AND METHODS In the absence of a murine bladder tumor model expressing a tumor antigen relevant for human use we established an orthotopic model expressing the HPV-16 tumor antigen E7 as a model. We used an adjuvant E7 polypeptide to induce CD8 T cell mediated tumor regression. RESULTS Subcutaneous and intravaginal but not intranasal vaccination induced a high number of TetE7(+)CD8(+) T cells in the bladder as well as bladder tumor regression. The entry of vaccine specific T cells in the bladder was not the only key since persistent regression of established bladder tumors by intravaginal or subcutaneous immunization was associated with tumor infiltration of total CD4 and CD8 T cells. This resulted in an increase in TetE7(+)CD8(+) T cells and a decrease in T regulatory cells, leading to an increased number of effector interferon-γ secreting vaccine specific CD8 T cells in the regressing bladder tumor. CONCLUSIONS These data show that immunization routes should be tailored to each mucosal tumor site. Subcutaneous or intravaginal vaccination may be of additional value to treat patients with bladder cancer.
Collapse
|
5
|
Different profile and distribution of antigen specific T cells induced by intranasal and intrarectal immunization with rotavirus 2/6-VLP with and without LT-R192G. Vaccine 2013; 31:1924-30. [PMID: 23453731 DOI: 10.1016/j.vaccine.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/01/2013] [Accepted: 02/08/2013] [Indexed: 01/13/2023]
Abstract
In this study, we compared both the profile and distribution of antigen specific primed T cells after intrarectal (IR) and intranasal (IN) immunization with rotavirus (RV) 2/6-VLP, alone or in the presence of LT-R192G, in order to highlight the differences between the two routes and the impact of the adjuvant. Adult BALB/c mice were immunized once with 2/6-VLP with or without adjuvant and the T cell response was analyzed in lymphoid tissues after in vitro restimulation with the antigen. IN, but not IR, immunization of mice with 2/6-VLP alone induced antigen-specific IL-10 and IL-17 secreting T cells. IL-10-, in contrast to IL-17-, secreting T cells did not migrate to the mesenteric lymph nodes (MLN) whereas they were detected in cervical lymph nodes (CLN) and spleen. With the IN route, the adjuvant allowed to complete this profile with the secretion of IL-2 and IL-4, increased IL-17 secretion and induced antigen specific CD4+CD25+Foxp3+ and Foxp3- T cells in all studied organs (CLN, spleen and MLN) but did not impact on IL-10 secreting T cells. With the IR route, the adjuvant induced IL-2 and IL-17 secretion but, in contrast to the IN route, did not allow IL-4 production. These results show that, for a same antigen, T cell priming not only depends on the presence of adjuvant but also on the mucosal route of administration. Moreover, they show a different dissemination of IL-10 secreting T cells compared to other subtypes.
Collapse
|
6
|
Salehi M, Taheri T, Mohit E, Zahedifard F, Seyed N, Taslimi Y, Sattari M, Bolhassani A, Rafati S. Recombinant Leishmania tarentolae encoding the HPV type 16 E7 gene in tumor mice model. Immunotherapy 2012. [DOI: 10.2217/imt.12.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cervical cancer, the third most prevalent cause of cancer in women worldwide, is associated with HPVs. The critical role of E7 protein in HPV-related malignancies has designated it as a strong contender for generating vaccines against HPV. Materials & methods: In this study, we developed a novel live vaccine using recombinant Leishmania tarentolae expressing E7-green fluorescent protein (GFP) fusion protein for the protection of mice against HPV-associated tumors. In order to transfect L. tarentolae with E7-GFP fusion construct, pLEXSY-neo2 system was applied. Followed by PCR, fluorescence imaging and fluorescence-activated cell sorting analysis, integration of E7-GFP gene into parasites genome was confirmed. A comparative study of six groups of C57BL/6 mice was performed to analyze antigen-specific humoral and cellular immune responses against E7 encoding live and DNA vaccines. Furthermore, the anti-tumor protective effect of L. tarentolae-E7-GFP was compared to other vaccination strategies, namely pcDNA-E7 as the DNA vaccine and pcDNA-E7/L. tarentolae-E7-GFP as the prime-boost regimen. Results: We found that E7-GFP expressing recombinant L. tarentolae induces significant levels of IgG2a and IFN-γ, while there is no significant IL-5 production compared with that of other strategies and control groups before and after challenge with TC-1 tumor cells. It is noteworthy that the designed live vaccine showed the best protection and minimum tumor size among all groups against TC-1-induced tumors. Conclusion: Overall, the results obtained revealed that the E7-GFP recombinant L. tarentolae could be a potential live vaccine for induction of immune responses in vivo.
Collapse
Affiliation(s)
- Maryam Salehi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Azam Bolhassani
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|