1
|
Yang H, Kim C, Zou W. Metabolism and macrophages in the tumor microenvironment. Curr Opin Immunol 2024; 91:102491. [PMID: 39368171 DOI: 10.1016/j.coi.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chan Kim
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Medical Oncology, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Cancer Biology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Oktem EK, Aydin B, Gulfidan G, Arga KY. A Transcriptomic and Reverse-Engineering Strategy Reveals Molecular Signatures of Arachidonic Acid Metabolism in 12 Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:127-138. [PMID: 36800175 DOI: 10.1089/omi.2022.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer and arachidonic acid (AA) have important linkages. For example, AA metabolites regulate several critical biological functions associated with carcinogenesis: angiogenesis, apoptosis, and cancer invasion. However, little is known about the comparative changes in metabolite expression of the arachidonic acid pathway (AAP) in carcinogenesis. In this study, we examined transcriptome data from 12 cancers, such as breast invasive carcinoma, colon adenocarcinoma, lung adenocarcinoma, and prostate adenocarcinoma. We also report here a reverse-engineering strategy wherein we estimated metabolic signatures associated with AAP by (1) making deductive inferences through transcriptome-level data extraction, (2) remodeling AA metabolism, and (3) performing a comparative analysis of cancer types to determine the similarities and differences between different cancer types with respect to AA metabolic alterations. We identified 77 AAP gene signatures differentially expressed in cancers and 37 AAP metabolites associated with them. Importantly, the metabolite 15(S)-HETE was identified in almost all cancers, while arachidonate, 5-HETE, PGF2α, 14,15-EET, 8,9-EET, 5,6-EET, and 20-HETE were discovered as other most regulated metabolites. This study shows that the 12 cancers studied herein, although in different branches of the AAP, have altered expression of AAP gene signatures. Going forward, AA related-cancer research generally, and the molecular signatures and their estimated metabolites reported herein specifically, hold broad promise for precision/personalized medicine in oncology as potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
3
|
Lipids as Targets for Renal Cell Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043272. [PMID: 36834678 PMCID: PMC9963825 DOI: 10.3390/ijms24043272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.
Collapse
|
4
|
Channar PA, Alharthy RD, Ejaz SA, Saeed A, Iqbal J. Synthesis, Biological Evaluation, and Molecular Dynamics of Carbothioamides Derivatives as Carbonic Anhydrase II and 15-Lipoxygenase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248723. [PMID: 36557863 PMCID: PMC9785969 DOI: 10.3390/molecules27248723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A series of hydrazine-1-carbothioamides derivatives (3a-3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Pervaiz Ali Channar
- Department of Basic sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Rima D. Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
- Correspondence: (A.S.); or (J.I.)
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (A.S.); or (J.I.)
| |
Collapse
|
5
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
6
|
Ambaw YA, Fuchs D, Raida M, Mazengia NT, Torta F, Wheelock CE, Wenk MR, Tong L. Changes of tear lipid mediators after eyelid warming or thermopulsation treatment for meibomian gland dysfunction. Prostaglandins Other Lipid Mediat 2020; 151:106474. [PMID: 32783924 DOI: 10.1016/j.prostaglandins.2020.106474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023]
Abstract
Meibomian gland dysfunction (MGD) represents a major cause of dry eye and ocular discomfort. Lipid mediators, often termed oxylipins, can be produced enzymatically or non-enzymatically, and may modulate inflammatory processes in MGD. Here, we aimed to assess the longitudinal changes of lipid mediators after various eyelid treatments (eyelid warming and thermopulsation) over 12 weeks. Secondly, we aimed to assess the chirality of mono-hydroxyl lipid mediators from tears of MGD and healthy participants. Tears lipid mediators were extracted from Schirmer's strips and levels were quantified by liquid chromatography mass spectrometry (LC-MS) techniques. We quantified 33 lipid mediators in the tear, 18 of which (including 11-HETE, 20-OH-LTB4, and 15-oxoETE) were reduced significantly after treatment. Changes in concentrations of 10-HDoHE (r = 0.54) and 15-oxoETE (r = 0.54) were correlated to the number of meibomian gland plugs at baseline, so increased severity of MGD was associated with treatment-induced change in lipid mediators. The chiral analysis demonstrated that 5(S)-HETE, 12(S)-HETE, 15(S)-HETE, 14(S)-HDoHE, 17(S)-HDoHE and 11(R)-HETE were produced with significant enantiomeric excess (ee %) in controls compared to patients, due to enantiomer selective enzymatic action, whereas most lipid mediators were racemates in patients, due to dominance of oxidative effects which have no enantiomeric preference. Treatment of MGD restored the concentrations of 15(S)-HETE, 14(S)-HDoHE and 17(S)-HDoHE with significant ee values, suggesting reduction in oxidative action. Overall, MGD therapy reduced pro-inflammatory molecules generated by lipoxygenase and oxidative stress.
Collapse
Affiliation(s)
- Yohannes Abere Ambaw
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Harvard University, USA
| | - David Fuchs
- Department of Medicine Debre, Berhan University, Ethiopia
| | - Manfred Raida
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Craig E Wheelock
- Division of Physiological Chemistry II Department of Medical Biochemistry and Biophysics Karolinska Institutet, Sweden
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Louis Tong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore; Duke-NUS Medical School, Singapore; Ocular Surface Research Group, Singapore Eye Research Institute, Singapore.
| |
Collapse
|
7
|
Chen CY, Lin P, Tsai MH, Lee HL. Targeted lipidomics profiling of acute arsenic exposure in mice serum by on-line solid-phase extraction stable-isotope dilution liquid chromatography–tandem mass spectrometry. Arch Toxicol 2017; 91:3079-3091. [DOI: 10.1007/s00204-017-1937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022]
|
8
|
VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response? Oncotarget 2016; 6:43420-37. [PMID: 26486078 PMCID: PMC4791241 DOI: 10.18632/oncotarget.5560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL−) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL− cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation.
Collapse
|
9
|
Hutterer GC, Pichler M, Chromecki TF, Strini KA, Klatte T, Pummer K, Remzi M, Mannweiler S, Zigeuner R. Tumour-associated macrophages might represent a favourable prognostic indicator in patients with papillary renal cell carcinoma. Histopathology 2013; 63:309-15. [PMID: 23802739 DOI: 10.1111/his.12163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/15/2013] [Indexed: 12/14/2022]
Abstract
AIMS Tumour-associated macrophages (TAM) have been reported to be regulators of progression in various human cancers. We evaluated the prognostic relevance of TAM in a large series of patients with papillary renal cell carcinoma (PRCC). METHODS AND RESULTS The impact of TAM on cancer-specific survival (CSS) in 177 patients with PRCC was assessed using the Kaplan-Meier method and log-rank test. A multivariate Cox regression analysis was performed with respect to CSS. The presence of TAM was noted in 112 of 177 (63%) tumours and was associated statistically significantly with favourable pathological parameters, including low pathological T stage, node-negative tumours, low tumour grade, absence of vascular invasion and papillary subtype (all P < 0.05), respectively. Five-year CSS probabilities for patients with TAM-positive tumours were 93.5%, compared with 72.5% in patients with TAM-negative tumours, respectively (P < 0.001). Multivariate analysis revealed node-positive tumours, distant metastases and UICC stage (I versus II-IV) as independent predictors of death from PRCC, whereas the presence of TAM was associated independently with favourable outcome (hazard ratio = 0.45, 95% confidence interval 0.24-0.84, P = 0.012). CONCLUSIONS The presence of TAM was shown independently to reduce the risk of death from cancer by 55%. The presence of TAM should therefore become part of routine pathology reporting in PRCC.
Collapse
Affiliation(s)
- Georg C Hutterer
- Department of Urology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma J, Zhang L, Zhang J, Liu M, Wei L, Shen T, Ma C, Wang Y, Chen Y, Zhu D. 15-lipoxygenase-1/15-hydroxyeicosatetraenoic acid promotes hepatocellular cancer cells growth through protein kinase B and heat shock protein 90 complex activation. Int J Biochem Cell Biol 2013; 45:1031-41. [PMID: 23474367 DOI: 10.1016/j.biocel.2013.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/05/2013] [Accepted: 02/24/2013] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma is a typical hypervascular tumor resulted from excessive growth of tumor cells. Previous studies have demonstrated that the lipoxygenase is considered as a potential therapeutic target and have important influence on human cancers. However, whether the 15-lipoxygenase-1 (15-LO-1)/15-hydroxyeicosatetraenoic acid (15-HETE) pathway participates in the development and progression of hepatocellular carcinoma has not been reported until now. To test the hypothesis that the 15-LO-1/15-HETE signaling regulates hepatocellular carcinoma cells growth and metastasis via the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/heat shock protein 90 pathway, we performed these studies. Our results showed that hepatocellular carcinoma cell lines (HepG2 and SMMC7721) apoptosis and growth arrest occurred following blockade of the 15-LO pathway with a 15-LO-1 inhibitor or siRNA, and all the effects were reversed by exogenous 15-HETE. Meanwhile, 15-HETE strengthened the expression of phosphor-Akt and heat shock protein 90, and inhibited apoptosis induced by serum deprivation via promoting the interaction of Akt with heat shock protein 90. In addition, the invasion and migration of HepG2 enhanced by 15-HETE were both attenuated by the inhibitor of Akt or heat shock protein 90. These results indicate that the 15-LO-1/15-HETE pathway prevents hepatocellular carcinoma cells from apoptosis and promotes hepatocellular carcinoma progression via a specific intracellular signaling pathway centered by the interaction of Akt with heat shock protein 90, and suggest a new therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|