1
|
Liu Y, Li S, Chen L, Lin L, Xu C, Qiu H, Li X, Cao H, Liu K. Global trends in tumor microenvironment-related research on tumor vaccine: a review and bibliometric analysis. Front Immunol 2024; 15:1341596. [PMID: 38380323 PMCID: PMC10876793 DOI: 10.3389/fimmu.2024.1341596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Background Tumor vaccines have become crucial in cancer immunotherapy, but, only a limited number of phase III clinical trials have demonstrated clinical efficacy. The crux of this issue is the inability of tumor vaccines to effectively harmonize the tumor microenvironment with its intricate interplay. One factor that can hinder the effectiveness of vaccines is the natural immunosuppressive element present in the tumor microenvironment. This element can lead to low rates of T-cell response specific to antigens and the development of acquired resistance. Conversely, anticancer vaccines alter the tumor microenvironment in conflicting manners, inducing both immune activation and immunological evasion. Hence, comprehending the correlation between tumor vaccines and the tumor microenvironment would establish a foundation for forthcoming tumor treatment. Objective Our review explores the realm of research pertaining to tumor vaccinations and the tumor microenvironment. Our objective is to investigate the correlation between tumor vaccines and the tumor microenvironment within this domain. We then focus our review on the dominant international paradigms in this research field and visually illustrates the historical progression and emergent patterns observed in the past. Methods From January 1, 1999 to February 7, 2023, 1420 articles on the interplay between tumor vaccines and the tumor microenvironment were published, according to The Clarivate Web of Science (WOS) database used in our review. A bibliometric review was designed for this collection and consisted of an evaluation. The evaluation encompassed various discernible attributes, including the year of publication, the journals in which the articles were published, the authors involved, the affiliated institutions, the geographical locations of the institutions, the references cited, and the keywords employed. Results Between the years 1999 and 2022, publications saw a significant increase, from 3 to 265 annually. With 72 papers published, Frontiers in Immunology had the most manuscripts published. The Cancer Research publication garnered the highest number of citations, amounting to 2874 citations. The United States exerts significant dominance in the subject, with the National Cancer Institute being recognized as a prominent institution in terms of both productivity and influence. Furthermore, Elizabeth M. Jaffee was recognized as the field's most prolific and influential author with 24 publications and 1,756 citations. The co-occurrence cluster analysis was conducted on the top 197 keywords, resulting in the identification of five distinct clusters. The most recent high-frequency keywords, namely immune therapy, dendritic cell, tumor microenvironment, cancer, and vaccine, signify the emerging frontiers in the interaction between tumor vaccines and the tumor microenvironment. Conclusion Our review uncovers insights into contemporary trends, global patterns of collaboration, fundamental knowledge, research areas of high interest, and emerging frontiers in the field of TME-targeted vaccines.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kun Liu
- Department of Neurosurgery, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurosurgery, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| |
Collapse
|
2
|
Khong A, Cleaver AL, Fahmi Alatas M, Wylie BC, Connor T, Fisher SA, Broomfield S, Lesterhuis WJ, Currie AJ, Lake RA, Robinson BW. The efficacy of tumor debulking surgery is improved by adjuvant immunotherapy using imiquimod and anti-CD40. BMC Cancer 2014; 14:969. [PMID: 25518732 PMCID: PMC4320570 DOI: 10.1186/1471-2407-14-969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Tumor debulking surgery followed by adjuvant chemotherapy or radiotherapy is a standard treatment for many solid malignancies. Although this approach can be effective, it often has limited success against recurrent or metastatic cancers and new multimodality approaches are needed. Adjuvant immunotherapy is another potentially effective approach. We therefore tested the efficacy of the TLR7 agonist imiquimod (IMQ) combined with agonistic anti-CD40 in an incomplete debulking model of malignant mesothelioma. Methods Established subcutaneous murine ABA-HA mesothelioma tumors in BALB/c mice were surgically debulked by 75% and treated with either: i) saline; ii) intratumoral IMQ; iii) systemic anti-CD40 antibody, or using a combination of IMQ and anti-CD40. Tumour growth and survival were monitored, and the role of anti-tumor CD4 and CD8 T cells in therapeutic responses was determined. Results The combination therapy of partial debulking surgery, IMQ and anti-CD40 significantly delayed tumor growth in a CD8 T cell dependent manner, and promoted tumor regression in 25% of animals with establishment of immunological memory. This response was associated with an increase in ICOS+ CD8 T cells and tumor-specific CTL activity in tumor draining lymph nodes along with an increase in ICOS+ CD8 T cells in responding tumours. Conclusions We show that the post-surgical environment can be significantly altered by the co-administration of adjuvant IMQ and anti-CD40, resulting in strong, systemic anti-tumor activity. Both adjuvants are available for clinical use/trial, hence this treatment regimen has clear translational potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bruce W Robinson
- School of Medicine and Pharmacology, The University of Western Australia, Perth, Perth, Western Australia.
| |
Collapse
|
3
|
The "Trojan Horse" approach to tumor immunotherapy: targeting the tumor microenvironment. J Immunol Res 2014; 2014:789069. [PMID: 24955376 PMCID: PMC4052171 DOI: 10.1155/2014/789069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 01/29/2023] Open
Abstract
Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The “Trojan Horse” approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more “full frontal” treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient “dangerous” tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.
Collapse
|