1
|
Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers (Basel) 2019; 11:cancers11030356. [PMID: 30871206 PMCID: PMC6468645 DOI: 10.3390/cancers11030356] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is the most aggressive and treatment resistant type of skin cancer. It is characterized by continuously rising incidence and high mortality rate due to its high metastatic potential. Various types of cell adhesion molecules have been implicated in tumor progression in melanoma. One of these, the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is a multi-functional receptor protein potentially expressed in epithelia, endothelia, and leukocytes. CEACAM1 often appears in four isoforms differing in the length of their extracellular and intracellular domains. Both the CEACAM1 expression in general, and the ratio of the expressed CEACAM1 splice variants appear very dynamic. They depend on both the cell activation stage and the cell growth phase. Interestingly, normal melanocytes are negative for CEACAM1, while melanomas often show high expression. As a cell–cell communication molecule, CEACAM1 mediates the direct interaction between tumor and immune cells. In the tumor cell this interaction leads to functional inhibitions, and indirectly to decreased cancer cell immunogenicity by down-regulation of ligands of the NKG2D receptor. On natural killer (NK) cells it inhibits NKG2D-mediated cytolysis and signaling. This review focuses on novel mechanistic insights into CEACAM1 isoforms for NK cell-mediated immune escape mechanisms in melanoma, and their clinical relevance in patients suffering from malignant melanoma.
Collapse
|
2
|
Frazao A, Messaoudene M, Nunez N, Dulphy N, Roussin F, Sedlik C, Zitvogel L, Piaggio E, Toubert A, Caignard A. CD16 +NKG2A high Natural Killer Cells Infiltrate Breast Cancer-Draining Lymph Nodes. Cancer Immunol Res 2018; 7:208-218. [PMID: 30514793 DOI: 10.1158/2326-6066.cir-18-0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
Tumor-draining lymph nodes (TD-LNs) are the first site of metastasis of breast cancer. Natural killer (NK) cells that infiltrate TD-LNs [including noninvaded (NI) or metastatic (M)-LNs from breast cancer patients] and NK cells from healthy donor (HD)-LNs were characterized, and their phenotype analyzed by flow cytometry. Low percentages of tumor cells invaded M-LNs, and these cells expressed ULBP2 and HLA class I molecules. Although NK cells from paired NI and M-LNs were similar, they expressed different markers compared with HD-LN NK cells. Compared with HD-LNs, TD-LN NK cells expressed activating DNAM-1, NKG2C and inhibitory NKG2A receptors, and exhibited elevated CXCR3 expression. CD16, NKG2A, and NKp46 expression were shown to be increased in stage IIIA breast cancer patients. TD-LNs contained a large proportion of activated CD56brightCD16+ NK cells with high expression of NKG2A. We also showed that a subset of LN NK cells expressed PD-1, expression of which was correlated with NKp30 and NKG2C expression. LN NK cell activation status was evaluated by degranulation potential and lytic capacity toward breast cancer cells. NK cells from TD-LNs degranulated after coculture with breast cancer cell lines. Cytokine-activated TD-LN NK cells exerted greater lysis of breast cancer cell lines than HD-LN NK cells and preferentially lysed the HLA class Ilow MCF-7 breast cancer cell line. TD-LNs from breast cancer patients, thus, contained activated lytic NK cells. The expression of inhibitory receptor NKG2A and checkpoint PD-1 by NK cells infiltrating breast cancer-draining LNs supports their potential as targets for immunotherapies using anti-NKG2A and/or anti-PD-1.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Meriem Messaoudene
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Nicolas Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - France Roussin
- Service d'Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France.,Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.
| |
Collapse
|
3
|
Fend L, Rusakiewicz S, Adam J, Bastien B, Caignard A, Messaoudene M, Iribarren C, Cremer I, Marabelle A, Borg C, Semeraro M, Barraud L, Limacher JM, Eggermont A, Kroemer G, Zitvogel L. Prognostic impact of the expression of NCR1 and NCR3 NK cell receptors and PD-L1 on advanced non-small cell lung cancer. Oncoimmunology 2016; 6:e1163456. [PMID: 28197362 DOI: 10.1080/2162402x.2016.1163456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/21/2023] Open
Abstract
The putative contribution of natural killer (NK) cells to immunosurveillance in non-small cell lung cancer (NSCLC) has been an ongoing conundrum. Here, we used a readily standardizable quantitative real time polymerase chain reaction (qRT-PCR) to measure the expression of NK cell receptors in total peripheral blood mononuclear cells (PBMC) from healthy volunteers (HV), patients with gastrointestinal stromal tumors (GIST), neuroblastoma (NB), melanoma or NSCLC. We quantified NCR1 (which codes for NKp46) and NCR3 (which codes for NKp30), as well as that of three NCR3 splice variants (which give rise to immunostimulatory NKp30A and NKp30B, as well as to immunosuppressive NKp30C). NSCLC patients expressed lower levels of NCR1 than did HV. Remarkably, NCR3 was lower in NSCLC patients than in HV as well as in all other malignancies. Moreover, a discrete proportion of NSCLC patients exhibited a particular low ratio between NKp30B and NKp30C (ΔBC). In the overall cohort, low expression of NCR3 correlated with poor overall and progression-free survival (PFS). When patients were stratified according to the level of PD-L1 expression by NSCLC cells, within the PD-L1high category (>5% positive tumors), the sole parameter that affected prognosis was the expression of NCR1. However, in patients bearing tumors with negative PD-L1 expression on tumor or tumor-infiltrating stromal cells, the ΔBClow patients exhibited a dismal prognosis. Altogether, these results strongly suggest that NK cells mediate immunosurveillance against NSCLC and that measuring NK cell receptor expression by blood cells can yield useful biomarkers for patient stratification.
Collapse
Affiliation(s)
- Laetitia Fend
- Transgene S.A, Parc d'innovation, Illkirch-Graffenstaden Cedex, France; Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Sylvie Rusakiewicz
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), GRCC, Villejuif, France
| | - Julien Adam
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Pathology, GRCC, Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Bérangère Bastien
- Transgene S.A, Parc d'innovation , Illkirch-Graffenstaden Cedex, France
| | - Anne Caignard
- INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Meriem Messaoudene
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Christina Iribarren
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Christophe Borg
- INSERM, Unité Mixte de Recherche, University of Franche-Comté, Besançon, France; Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France; Université de Franche-Comté, Besançon, France
| | - Michaela Semeraro
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Department of Pediatric Oncology, GRCC, Villejuif, France
| | - Luc Barraud
- Transgene S.A, Parc d'innovation , Illkirch-Graffenstaden Cedex, France
| | | | | | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, GRCC, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), GRCC, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Department of Immuno-Oncology, GRCC, Villejuif, France
| |
Collapse
|