1
|
Diem S, Hasan Ali O, Ackermann CJ, Bomze D, Koelzer VH, Jochum W, Speiser DE, Mertz KD, Flatz L. Tumor infiltrating lymphocytes in lymph node metastases of stage III melanoma correspond to response and survival in nine patients treated with ipilimumab at the time of stage IV disease. Cancer Immunol Immunother 2018; 67:39-45. [PMID: 28894934 PMCID: PMC11028172 DOI: 10.1007/s00262-017-2061-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023]
Abstract
Prognosis of metastatic melanoma improved with the development of checkpoint inhibitors. The role of tumor infiltrating lymphocytes (TILs) in lymph node metastases of stage III melanoma remains unclear. We retrospectively characterized TILs in primary melanomas and matched lymph node metastases (stage III melanoma) of patients treated with the checkpoint inhibitor ipilimumab. Tumor infiltrating lymphocytes were characterized for CD3, CD4, and CD8 expressions by immunohistochemistry. 4/9 patients (44%) responded to treatment with ipilimumab (1 complete and 2 partial remissions, 1 stable disease). All responders exhibited CD4 and CD8 T-cell infiltration in their lymph node metastases, whereas all non-responders did not show an infiltration of the lymph node metastasis with TILs. The correlation between the presence and absence of TILs in responders vs. non-responders was statistically significant (p = 0.008). Median distant metastases free survival, i.e., progression from stage III to stage IV melanoma, was similar in responders and non-responders (22.1 vs. 19.3 months; p = 0.462). Median progression free and overall survival show a trend in favor of the patients having TIL rich lymph node metastases (6.8 vs. 3.3 months, p = 0.09; and all alive at last follow-up vs. 8.2 months, respectively, p = 0.08). Our data suggest a correlation between the T-cell infiltration of the lymph node metastases in stage III melanoma and the response to ipilimumab once these patients progress to stage IV disease.
Collapse
Affiliation(s)
- Stefan Diem
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Department of Oncology and Hematology, Hospital Grabs, Grabs, Switzerland
| | - Omar Hasan Ali
- Department of Dermatology/Allergology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland
- Institute of Immunobiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christoph J Ackermann
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Viktor H Koelzer
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Lukas Flatz
- Department of Dermatology/Allergology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Switzerland.
- Institute of Immunobiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
3
|
Vallacchi V, Camisaschi C, Dugo M, Vergani E, Deho P, Gualeni A, Huber V, Gloghini A, Maurichi A, Santinami M, Sensi M, Castelli C, Rivoltini L, Rodolfo M. microRNA Expression in Sentinel Nodes from Progressing Melanoma Patients Identifies Networks Associated with Dysfunctional Immune Response. Genes (Basel) 2016; 7:genes7120124. [PMID: 27983661 PMCID: PMC5192500 DOI: 10.3390/genes7120124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sentinel node biopsy (SNB) is a main staging biomarker in melanoma and is the first lymph node to drain the tumor, thus representing the immunological site where anti-tumor immune dysfunction is established and where potential prognostic immune markers can be identified. Here we analyzed microRNA (miR) profiles in archival tumor-positive SNBs derived from melanoma patients with different outcomes and performed an integrated analysis of transcriptional data to identify deregulated immune signaling networks. Twenty-six miRs were differentially expressed in melanoma-positive SNB samples between patients with disease progression and non-progressing patients, the majority being previously reported in the regulation of immune responses. A significant variation in miR expression levels was confirmed in an independent set of SNB samples. Integrated information from genome-wide transcriptional profiles and in vitro assessment in immune cells led to the identification of miRs associated with the regulation of the TNF receptor superfamily member 8 (TNFRSF8) gene encoding the CD30 receptor, a marker increased in lymphocytes of melanoma patients with progressive disease. These findings indicate that miRs are involved in the regulation of pathways leading to immune dysfunction in the sentinel node and may provide valuable markers for developing prognostic molecular signatures for the identification of stage III melanoma patients at risk of recurrence.
Collapse
Affiliation(s)
- Viviana Vallacchi
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Chiara Camisaschi
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Matteo Dugo
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Elisabetta Vergani
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Paola Deho
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Ambra Gualeni
- Molecular Pathology Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Veronica Huber
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Annunziata Gloghini
- Molecular Pathology Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Marialuisa Sensi
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Chiara Castelli
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Licia Rivoltini
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| | - Monica Rodolfo
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy.
| |
Collapse
|
4
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
5
|
Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147. [PMID: 25941597 DOI: 10.4161/21624011.2014.967147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | | |
Collapse
|