1
|
Trubitsina NP, Zemlyanko OM, Matveenko AG, Bondarev SA, Moskalenko SE, Maksiutenko EM, Zudilova AA, Rogoza TM, Zhouravleva GA. Prion-Dependent Lethality of sup35 Missense Mutations Is Caused by Low GTPase Activity of the Mutant eRF3 Protein. Int J Mol Sci 2025; 26:3434. [PMID: 40244414 PMCID: PMC11989363 DOI: 10.3390/ijms26073434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The essential SUP35 gene encodes yeast translation termination factor Sup35/eRF3. The N-terminal domain of Sup35 is also responsible for Sup35 prionization that leads to generation of the [PSI+] prion. Previously we isolated different types of sup35 mutations (missense and nonsense) and demonstrated that sup35 nonsense mutations (sup35-n) are incompatible with the [PSI+] prion, leading to lethality of sup35-n [PSI+] haploid cells. Here, we show that sup35 missense mutations (sup35-m) within conservative regions of the Sup35 C-domain result in lethality of [PSI+] cells because of weak activity of Sup35/eRF3 as a translation termination factor. Mutant Sup35 maintain their ability to be incorporated into pre-existing [PSI+] aggregates and to form amyloid aggregates in vitro, while sup35-m mutations do not influence the [PSI+] prion induction and stability. All these mutations (D363N, R372K, T378I) are located in the conservative GTPase region of Sup35, decreasing the GTPase activity of mutated proteins. We propose that such low activity of mutant Sup35 combined with aggregation of Sup35 constituting the [PSI+] prion is not sufficient to maintain the viability of yeast cells.
Collapse
Affiliation(s)
- Nina P. Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Anna A. Zudilova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Tatiana M. Rogoza
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Tikhodeyev ON. Prions as Non-Canonical Hereditary Factors. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Trubitsina NP, Zemlyanko OM, Bondarev SA, Zhouravleva GA. Nonsense Mutations in the Yeast SUP35 Gene Affect the [ PSI+] Prion Propagation. Int J Mol Sci 2020; 21:E1648. [PMID: 32121268 PMCID: PMC7084296 DOI: 10.3390/ijms21051648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The essential SUP35 gene encodes yeast translation termination factor eRF3. Previously, we isolated nonsense mutations sup35-n and proposed that the viability of such mutants can be explained by readthrough of the premature stop codon. Such mutations, as well as the prion [PSI+], can appear in natural yeast populations, and their combinations may have different effects on the cells. Here, we analyze the effects of the compatibility of sup35-n mutations with the [PSI+] prion in haploid and diploid cells. We demonstrated that sup35-n mutations are incompatible with the [PSI+] prion, leading to lethality of sup35-n [PSI+] haploid cells. In diploid cells the compatibility of [PSI+] with sup35-n depends on how the corresponding diploid was obtained. Nonsense mutations sup35-21, sup35-74, and sup35-218 are compatible with the [PSI+] prion in diploid strains, but affect [PSI+] properties and lead to the formation of new prion variant. The only mutation that could replace the SUP35 wild-type allele in both haploid and diploid [PSI+] strains, sup35-240, led to the prion loss. Possibly, short Sup351-55 protein, produced from the sup35-240 allele, is included in Sup35 aggregates and destabilize them. Alternatively, single molecules of Sup351-55 can stick to aggregate ends, and thus interrupt the fibril growth. Thus, we can conclude that sup35-240 mutation prevents [PSI+] propagation and can be considered as a new pnm mutation.
Collapse
Affiliation(s)
- Nina P. Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Urakov VN, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD. The Pub1 and Upf1 Proteins Act in Concert to Protect Yeast from Toxicity of the [PSI⁺] Prion. Int J Mol Sci 2018; 19:E3663. [PMID: 30463309 PMCID: PMC6275000 DOI: 10.3390/ijms19113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
The [PSI⁺] nonsense-suppressor determinant of Saccharomyces cerevisiae is based on the formation of heritable amyloids of the Sup35 (eRF3) translation termination factor. [PSI⁺] amyloids have variants differing in amyloid structure and in the strength of the suppressor phenotype. The appearance of [PSI⁺], its propagation and manifestation depend primarily on chaperones. Besides chaperones, the Upf1/2/3, Siw14 and Arg82 proteins restrict [PSI⁺] formation, while Sla2 can prevent [PSI⁺] toxicity. Here, we identify two more non-chaperone proteins involved in [PSI⁺] detoxification. We show that simultaneous lack of the Pub1 and Upf1 proteins is lethal to cells harboring [PSI⁺] variants with a strong, but not with a weak, suppressor phenotype. This lethality is caused by excessive depletion of the Sup45 (eRF1) termination factor due to its sequestration into Sup35 polymers. We also show that Pub1 acts to restrict excessive Sup35 prion polymerization, while Upf1 interferes with Sup45 binding to Sup35 polymers. These data allow consideration of the Pub1 and Upf1 proteins as a novel [PSI⁺] detoxification system.
Collapse
Affiliation(s)
- Valery N Urakov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Olga V Mitkevich
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Alexander A Dergalev
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
5
|
Barbitoff YA, Matveenko AG, Moskalenko SE, Zemlyanko OM, Newnam GP, Patel A, Chernova TA, Chernoff YO, Zhouravleva GA. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol 2017; 105:242-257. [PMID: 28431189 DOI: 10.1111/mmi.13697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Yeast self-perpetuating protein aggregates (prions) provide a convenient model for studying various components of the cellular protein quality control system. Molecular chaperones and chaperone-sorting factors, such as yeast Cur1 protein, play key role in proteostasis via tight control of partitioning and recycling of misfolded proteins. In this study, we show that, despite the previously described ability of Cur1 to antagonize the yeast prion [URE3], it enhances propagation and phenotypic manifestation of another prion, [PSI+ ]. We demonstrate that both curing of [URE3] and enhancement of [PSI+ ] in the presence of excess Cur1 are counteracted by the cochaperone Hsp40-Sis1 in a dosage-dependent manner, and show that the effect of Cur1 on prions parallels effects of the attachment of nuclear localization signal to Sis1, indicating that Cur1 acts on prions via its previously reported ability to relocalize Sis1 from the cytoplasm to nucleus. This shows that the direction in which Cur1 influences a prion depends on how this specific prion responds to relocalization of Sis1.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Svetlana E Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Olga M Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gary P Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Ayesha Patel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Matveenko AG, Belousov MV, Bondarev SA, Moskalenko SE, Zhouravleva GA. Identification of new genes that affect [PSI +] prion toxicity in Saccharomyces cerevisiae yeast. Mol Biol 2016. [DOI: 10.1134/s0026893316050113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Matveenko AG, Drozdova PB, Belousov MV, Moskalenko SE, Bondarev SA, Barbitoff YA, Nizhnikov AA, Zhouravleva GA. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1. Genes Cells 2016; 21:1290-1308. [DOI: 10.1111/gtc.12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew G. Matveenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Polina B. Drozdova
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Svetlana E. Moskalenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Anton A. Nizhnikov
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- All-Russia Research Institute for Agricultural Microbiology; Pushkin St Petersburg Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| |
Collapse
|
8
|
Matveenko AG, Zemlyanko OM, Zhouravleva GA. Identification of Saccharomyces cerevisiae genes leading to synthetic lethality of prion [PSI +] with SUP45 mutations. Mol Biol 2013. [DOI: 10.1134/s0026893313040110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
10
|
|
11
|
Kochneva-Pervukhova NV, Alexandrov AI, Ter-Avanesyan MD. Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast. PLoS One 2012; 7:e29832. [PMID: 22253794 PMCID: PMC3256205 DOI: 10.1371/journal.pone.0029832] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
Background Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. Principal Findings Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. Conclusions The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.
Collapse
|
12
|
Kiktev DA, Chernoff YO, Archipenko AV, Zhouravleva GA. Identification of genes influencing synthetic lethality of genetic and epigenetic alterations in translation termination factors in yeast. DOKL BIOCHEM BIOPHYS 2011; 438:117-9. [PMID: 21725886 DOI: 10.1134/s1607672911030021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Indexed: 11/23/2022]
Affiliation(s)
- D A Kiktev
- Department of Genetic and Breeding, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | | | | |
Collapse
|
13
|
Zhouravleva GA, Petrova AV. The role of translation termination factor eRF1 in the regulation of pseudohyphal growth in Saccharomyces cerevisiae cells. DOKL BIOCHEM BIOPHYS 2010; 433:209-11. [PMID: 20714858 DOI: 10.1134/s1607672910040162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 11/23/2022]
|
14
|
The paradox of viable sup45 STOP mutations: a necessary equilibrium between translational readthrough, activity and stability of the protein. Mol Genet Genomics 2009; 282:83-96. [PMID: 19370360 DOI: 10.1007/s00438-009-0447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q --> TAA, 242R --> TGA, 317L --> TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.
Collapse
|