1
|
Klawa SJ, Lee M, Riker KD, Jian T, Wang Q, Gao Y, Daly ML, Bhonge S, Childers WS, Omosun TO, Mehta AK, Lynn DG, Freeman R. Uncovering supramolecular chirality codes for the design of tunable biomaterials. Nat Commun 2024; 15:788. [PMID: 38278785 PMCID: PMC10817930 DOI: 10.1038/s41467-024-45019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
In neurodegenerative diseases, polymorphism and supramolecular assembly of β-sheet amyloids are implicated in many different etiologies and may adopt either a left- or right-handed supramolecular chirality. Yet, the underlying principles of how sequence regulates supramolecular chirality remains unknown. Here, we characterize the sequence specificity of the central core of amyloid-β 42 and design derivatives which enable chirality inversion at biologically relevant temperatures. We further find that C-terminal modifications can tune the energy barrier of a left-to-right chiral inversion. Leveraging this design principle, we demonstrate how temperature-triggered chiral inversion of peptides hosting therapeutic payloads modulates the dosed release of an anticancer drug. These results suggest a generalizable approach for fine-tuning supramolecular chirality that can be applied in developing treatments to regulate amyloid morphology in neurodegeneration as well as in other disease states.
Collapse
Affiliation(s)
- Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michelle Lee
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kyle D Riker
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Broad Pharm, San Diego, California, 92121, USA
| | - Qunzhao Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shreeya Bhonge
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - W Seth Childers
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- U.S. Department of Justice, Chicago, IL, 60603, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32611, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Zajkowski T, Lee MD, Sharma S, Vallota-Eastman A, Kuska M, Malczewska M, Rothschild LJ. Conserved functions of prion candidates suggest a primeval role of protein self-templating. Proteins 2023; 91:1298-1315. [PMID: 37519023 DOI: 10.1002/prot.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Universities Space Research Association at NASA Ames Research Center, Mountain View, California, USA
- Polish Astrobiology Society, Warsaw, Poland
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- KBR, NASA Ames Research Center, Mountain View, California, USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Alec Vallota-Eastman
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Mikołaj Kuska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Małgorzata Malczewska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Mountain View, California, USA
| |
Collapse
|
3
|
The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life (Basel) 2021; 11:life11090872. [PMID: 34575021 PMCID: PMC8467930 DOI: 10.3390/life11090872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
In this paper the hypothesis that prions and prion-like molecules could have initiated the chemical evolutionary process which led to the eventual emergence of life is reappraised. The prions first hypothesis is a specific application of the protein-first hypothesis which asserts that protein-based chemical evolution preceded the evolution of genetic encoding processes. This genetics-first hypothesis asserts that an “RNA-world era” came before protein-based chemical evolution and rests on a singular premise that molecules such as RNA, acetyl-CoA, and NAD are relics of a long line of chemical evolutionary processes preceding the Last Universal Common Ancestor (LUCA). Nevertheless, we assert that prions and prion-like molecules may also be relics of chemical evolutionary processes preceding LUCA. To support this assertion is the observation that prions and prion-like molecules are involved in a plethora of activities in contemporary biology in both complex (eukaryotes) and primitive life forms. Furthermore, a literature survey reveals that small RNA virus genomes harbor information about prions (and amyloids). If, as has been presumed by proponents of the genetics-first hypotheses, small viruses were present during an RNA world era and were involved in some of the earliest evolutionary processes, this places prions and prion-like molecules potentially at the heart of the chemical evolutionary process whose eventual outcome was life. We deliberate on the case for prions and prion-like molecules as the frontier molecules at the dawn of evolution of living systems.
Collapse
|
4
|
Grizel AV, Rubel AA, Chernoff YO. Strain conformation controls the specificity of cross-species prion transmission in the yeast model. Prion 2017; 10:269-82. [PMID: 27565563 DOI: 10.1080/19336896.2016.1204060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.
Collapse
Affiliation(s)
- Anastasia V Grizel
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,c Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Aleksandr A Rubel
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,c Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Yury O Chernoff
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,d School of Biological Sciences, Georgia Institute of Technology , Atlanta , GA , USA
| |
Collapse
|
5
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
6
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
7
|
Smith JE, Mowles AK, Mehta AK, Lynn DG. Looked at life from both sides now. Life (Basel) 2014; 4:887-902. [PMID: 25513758 PMCID: PMC4284472 DOI: 10.3390/life4040887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
As the molecular top–down causality emerging through comparative genomics is combined with the bottom–up dynamic chemical networks of biochemistry, the molecular symbiotic relationships driving growth of the tree of life becomes strikingly apparent. These symbioses can be mutualistic or parasitic across many levels, but most foundational is the complex and intricate mutualism of nucleic acids and proteins known as the central dogma of biological information flow. This unification of digital and analog molecular information within a common chemical network enables processing of the vast amounts of information necessary for cellular life. Here we consider the molecular information pathways of these dynamic biopolymer networks from the perspective of their evolution and use that perspective to inform and constrain pathways for the construction of mutualistic polymers.
Collapse
Affiliation(s)
- Jillian E Smith
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - Allisandra K Mowles
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - Anil K Mehta
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - David G Lynn
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Na I, Reddy KD, Breydo L, Xue B, Uversky VN. A putative role of the Sup35p C-terminal domain in the cytoskeleton organization during yeast mitosis. ACTA ACUST UNITED AC 2014; 10:925-40. [DOI: 10.1039/c3mb70515c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on structural analysis of several effectors and partners, Sup35pC is proposed to serve as actin modulator during mitosis.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Krishna D. Reddy
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Leonid Breydo
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Bin Xue
- Department of Cell Biology
- Microbiology, and Molecular Biology
- College of Arts and Science
- University of South Florida
- Tampa, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
- USF Health Byrd Alzheimer's Research Institute
| |
Collapse
|
9
|
Singh K, Saleh AA, Bhadra AK, Roy I. Hsp104 as a key modulator of prion-mediated oxidative stress in Saccharomyces cerevisiae. Biochem J 2013; 454:217-25. [PMID: 23746301 DOI: 10.1042/bj20121806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Maintenance of cellular redox homoeostasis forms an important part of the cellular defence mechanism and continued cell viability. Despite extensive studies, the role of the chaperone Hsp104 (heat-shock protein of 102 kDa) in propagation of misfolded protein aggregates in the cell and generation of oxidative stress remains poorly understood. Expression of RNQ1-RFP in Saccharomyces cerevisiae cells led to the generation of the prion form of the protein and increased oxidative stress. In the present study, we show that disruption of Hsp104 in an isogenic yeast strain led to solubilization of RNQ1-RFP. This reduced the oxidative stress generated in the cell. The higher level of oxidative stress in the Hsp104-containing (parental) strain correlated with lower activity of almost all of the intracellular antioxidant enzymes assayed. Surprisingly, this did not correspond with the gene expression analysis data. To compensate for the decrease in protein translation induced by a high level of reactive oxygen species, transcriptional up-regulation takes place. This explains the discrepancy observed between the transcription level and functional enzymatic product. Our results show that in a ΔHsp104 strain, due to lower oxidative stress, no such mismatch is observed, corresponding with higher cell viability. Thus Hsp104 is indirectly responsible for enhancing the oxidative stress in a prion-rich environment.
Collapse
Affiliation(s)
- Kuljit Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | | | | | | |
Collapse
|
10
|
Sobrova P, Blazkova I, Chomoucka J, Drbohlavova J, Vaculovicova M, Kopel P, Hubalek J, Kizek R, Adam V. Quantum dots and prion proteins: is this a new challenge for neurodegenerative diseases imaging? Prion 2013; 7:349-58. [PMID: 24055838 PMCID: PMC4134339 DOI: 10.4161/pri.26524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/19/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022] Open
Abstract
A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrP(Sc)), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrP(Sc) detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels.
Collapse
Affiliation(s)
- Pavlina Sobrova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Iva Blazkova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
| | - Jana Chomoucka
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Jana Drbohlavova
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Pavel Kopel
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Jaromir Hubalek
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Rene Kizek
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| | - Vojtech Adam
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Brno, Czech Republic EU
- Central European Institute of Technology; Brno University of Technology; Brno, Czech Republic EU
| |
Collapse
|
11
|
Espinosa Angarica V, Ventura S, Sancho J. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 2013; 14:316. [PMID: 23663289 PMCID: PMC3654983 DOI: 10.1186/1471-2164-14-316] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 05/06/2013] [Indexed: 01/23/2023] Open
Abstract
Background Prion proteins conform a special class among amyloids due to their ability to transmit aggregative folds. Prions are known to act as infectious agents in neurodegenerative diseases in animals, or as key elements in transcription and translation processes in yeast. It has been suggested that prions contain specific sequential domains with distinctive amino acid composition and physicochemical properties that allow them to control the switch between soluble and β-sheet aggregated states. Those prion-forming domains are low complexity segments enriched in glutamine/asparagine and depleted in charged residues and prolines. Different predictive methods have been developed to discover novel prions by either assessing the compositional bias of these stretches or estimating the propensity of protein sequences to form amyloid aggregates. However, the available algorithms hitherto lack a thorough statistical calibration against large sequence databases, which makes them unable to accurately predict prions without retrieving a large number of false positives. Results Here we present a computational strategy to predict putative prion-forming proteins in complete proteomes using probabilistic representations of prionogenic glutamine/asparagine rich regions. After benchmarking our predictive model against large sets of non-prionic sequences, we were able to filter out known prions with high precision and accuracy, generating prediction sets with few false positives. The algorithm was used to scan all the proteomes annotated in public databases for the presence of putative prion proteins. We analyzed the presence of putative prion proteins in all taxa, from viruses and archaea to plants and higher eukaryotes, and found that most organisms encode evolutionarily unrelated proteins with susceptibility to behave as prions. Conclusions To our knowledge, this is the first wide-ranging study aiming to predict prion domains in complete proteomes. Approaches of this kind could be of great importance to identify potential targets for further experimental testing and to try to reach a deeper understanding of prions’ functional and regulatory mechanisms.
Collapse
Affiliation(s)
- Vladimir Espinosa Angarica
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
| | | | | |
Collapse
|
12
|
Abstract
BACKGROUND Amyloid-β plaques are a defining characteristic of Alzheimer Disease. However, Amyloid-β deposition is also found in other forms of dementia and in non-pathological contexts. Amyloid-β deposition is variable among vertebrate species and the evolutionary emergence of the amyloidogenic property is currently unknown. Evolutionary persistence of a pathological peptide sequence may depend on the functions of the precursor gene, conservation or mutation of nucleotides or peptide domains within the precursor gene, or a species-specific physiological environment. RESULTS In this study, we asked when amyloidogenic Amyloid-β first arose using phylogenetic trees constructed for the Amyloid-β Precursor Protein gene family and by modeling the potential for Amyloid-β aggregation across species in silico. We collected the most comprehensive set of sequences for the Amyloid-β Precursor Protein family using an automated, iterative meta-database search and constructed a highly resolved phylogeny. The analysis revealed that the ancestral gene for invertebrate and vertebrate Amyloid-β Precursor Protein gene families arose around metazoic speciation during the Ediacaran period. Synapomorphic frequencies found domain-specific conservation of sequence. Analyses of aggregation potential showed that potentially amyloidogenic sequences are a ubiquitous feature of vertebrate Amyloid-β Precursor Protein but are also found in echinoderm, nematode, and cephalochordate, and hymenoptera species homologues. CONCLUSIONS The Amyloid-β Precursor Protein gene is ancient and highly conserved. The amyloid forming Amyloid-β domains may have been present in early deuterostomes, but more recent mutations appear to have resulted in potentially unrelated amyloid forming sequences. Our results further highlight that the species-specific physiological environment is as critical to Amyloid-β formation as the peptide sequence.
Collapse
Affiliation(s)
- William G Tharp
- Center for Clinical and Translational Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Division of Endocrinology, Department of Medicine, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Indra Neil Sarkar
- Center for Clinical and Translational Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Computer Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
13
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
16
|
Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P, Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. PLoS Genet 2012; 8:e1002634. [PMID: 22536159 PMCID: PMC3334884 DOI: 10.1371/journal.pgen.1002634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 12/02/2022] Open
Abstract
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines. Polyglutamine diseases, including Huntington disease, are associated with expansions of polyglutamine tracts, resulting in aggregation of respective proteins. The severity of Huntington disease is controlled by both DNA and non–DNA factors. Mechanisms of such a control are poorly understood. Polyglutamine may sequester other cellular proteins; however, different experimental models have pointed to different sequestered proteins. By using a yeast model, we demonstrate that the mechanism of polyglutamine toxicity is driven by the composition of other (endogenous) aggregates (for example, yeast prions) present in a eukaryotic cell. Although these aggregates do not necessarily cause significant toxicity on their own, they serve as mediators in protein sequestration and therefore determine which specific proteins are to be sequestered by polyglutamines. We also show that polyglutamine deposition into an aggresome, a perinuclear compartment thought to be cytoprotective, fails to ameliorate cytotoxicity in cells with certain compositions of pre-existing aggregates. Finally, we demonstrate that an increase in the dosage of a sequestered protein due to aneuploidy by a chromosome carrying a respective gene may rescue cytotoxicity. Our data shed light on genetic and epigenetic mechanisms modulating polyglutamine cytotoxicity and establish a new approach for identifying potential therapeutic targets through characterization of the endogenous aggregated proteins.
Collapse
Affiliation(s)
- He Gong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nina V. Romanova
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kim D. Allen
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | - Kavita Gokhale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Gary P. Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Piotr Mieczkowski
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yury O. Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kabani M, Melki R. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies. Prion 2011; 5:277-84. [PMID: 22052349 DOI: 10.4161/pri.18070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.
Collapse
Affiliation(s)
- Mehdi Kabani
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
18
|
|
19
|
Bruce KL, Chernoff YO. Sequence specificity and fidelity of prion transmission in yeast. Semin Cell Dev Biol 2011; 22:444-51. [PMID: 21439395 DOI: 10.1016/j.semcdb.2011.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a widespread feature of various proteins. It is associated with both important diseases (including infectious mammalian prions) and biologically positive functions, and provides a basis for structural "templating" and protein-based epigenetic inheritance (for example, in the case of yeast prions). Amyloid templating is characterized by a high level of sequence specificity and conformational fidelity. Even slight variations in sequence may produce a strong barrier for prion transmission. Yeast models provide useful insight into a mechanism of amyloid specificity and fidelity. Accumulating evidence indicates that cross-species prion transmission is controlled by the identity of short sequences (specificity stretches) rather than by the overall level of sequence identity. Location of the specificity stretches determines the location and/or size of the cross-β amyloid region that controls patterns of prion variants. In some cases of cross-species prion transmission, fidelity of variant reproduction is impaired, leading to the formation of new structural variants. We propose that such a variant switch may occur due to choice of the alternatively located secondary specificity stretches, when interaction between the primary stretches is impaired due to sequence divergence.
Collapse
Affiliation(s)
- Kathryn L Bruce
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
20
|
Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 2011; 408:432-48. [PMID: 21392508 DOI: 10.1016/j.jmb.2011.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
Abstract
Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.
Collapse
Affiliation(s)
- Gary P Newnam
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
21
|
The role of DNA polymerase alpha in the control of mutagenesis in Saccharomyces cerevisiae cells starved for nutrients. ACTA ACUST UNITED AC 2011; 9:53-61. [PMID: 25328544 DOI: 10.17816/ecogen9153-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In nature, micro organisms experience numerous environmental stresses and generally grow poorly most of the time. In the last two decades it has become evident that mutations arise not only in actively dividing cells but also in non-replicating or slowly replicating cells starved for nutrients. In yeast, precise base selection and proofreading by replicative DNA polymerases δ and ε keep starvation-associated mutagenesis (SAM) at basal levels. Less is known about the role of replicative DNA polymerase α (Pol α). Here we provide evidence that Pol α is involved in the control of SAM in yeast cells starved for adenine by participation in sporadic replication and/or DNA repair under these conditions.
Collapse
|
22
|
Kabani M, Melki R. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies. Prion 2011. [PMID: 22052349 PMCID: PMC4012403 DOI: 10.4161/pri.5.4.18070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.
Collapse
|
23
|
Abstract
Amyloids are common protein aggregates in nature. Some amyloids fulfill important biological tasks while others are known to cause diseases. Despite the fact that the ultrastructure of amyloid is highly conserved, the mechanism of amyloidogenesis remains a challenging research topic. In humans, amyloidoses may develop in the skin or lead to skin signs due to secondary cutaneous involvement. An accurate diagnostic procedure is crucial for planning the therapy of this heterogeneous group of diseases. Therefore, the aim of this paper is to give an overview on the different kinds of amyloidoses as well as on diagnostic and therapeutic approaches. Furthermore, the discrimination between functional and disease-causing amyloid is briefly presented.
Collapse
Affiliation(s)
- S Schreml
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg.
| | | | | | | |
Collapse
|
24
|
Baxa U, Keller PW, Cheng N, Wall JS, Steven AC. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone. Mol Microbiol 2010; 79:523-32. [PMID: 21219467 DOI: 10.1111/j.1365-2958.2010.07466.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter (∼8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield ∼1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Chen B, Bruce KL, Newnam GP, Gyoneva S, Romanyuk AV, Chernoff YO. Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 2010; 76:1483-99. [PMID: 20444092 DOI: 10.1111/j.1365-2958.2010.07177.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-perpetuating amyloid-based protein isoforms (prions) transmit neurodegenerative diseases in mammals and phenotypic traits in yeast. Although mechanisms that control species specificity of prion transmission are poorly understood, studies of closely related orthologues of yeast prion protein Sup35 demonstrate that cross-species prion transmission is modulated by both genetic (specific sequence elements) and epigenetic (prion variants, or 'strains') factors. Depending on the prion variant, the species barrier could be controlled at the level of either heterologous co-aggregation or conversion of the aggregate-associated heterologous protein into a prion polymer. Sequence divergence influences cross-species transmission of different prion variants in opposing ways. The ability of a heterologous prion domain to either faithfully reproduce or irreversibly switch the variant-specific prion patterns depends on both sequence divergence and the prion variant. Sequence variations within different modules of prion domains contribute to transmission barriers in different cross-species combinations. Individual amino acid substitutions within short amyloidogenic stretches drastically alter patterns of cross-species prion conversion, implicating these stretches as major determinants of species specificity.
Collapse
Affiliation(s)
- Buxin Chen
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
26
|
Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 2010; 4:45-52. [PMID: 20118659 DOI: 10.4161/pri.4.1.11074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells amyloid aggregates may incorporate various functionally unrelated proteins. In mammalian diseases this may cause amyloid toxicity, while in yeast this could contribute to prion phenotypes. Insolubility of amyloids in the presence of strong ionic detergents, such as SDS or sarcosyl, allows discrimination between amorphous and amyloid aggregates. Here, we used this property of amyloids to study the interdependence of their formation in yeast. We observed that SDS-resistant polymers of proteins with extended polyglutamine domains caused the appearance of SDS or sarcosyl-insoluble polymers of three tested chromosomally-encoded Q/N-rich proteins, Sup35, Rnq1 and Pub1. These polymers were non-heritable, since they could not propagate in the absence of polyglutamine polymers. Sup35 prion polymers caused the appearance of non-heritable sarcosyl-resistant polymers of Pub1. Since eukaryotic genomes encode hundreds of proteins with long Q/N-rich regions, polymer interdependence suggests that conversion of a single protein into polymer form may significantly affect cell physiology by causing partial transfer of other Q/N-rich proteins into a non-functional polymer state.
Collapse
|
27
|
Abstract
The self-perpetuating amyloid isoform, or prion, of the yeast translation termination factor eRF3 modulates programmed translational frameshifting that controls a regulatory circuit determining the polyamine levels in a yeast cell. But it is still unclear whether this effect is adaptive or pathological.
Collapse
|
28
|
Chernoff YO. Stress and prions: lessons from the yeast model. FEBS Lett 2007; 581:3695-701. [PMID: 17509571 PMCID: PMC2695654 DOI: 10.1016/j.febslet.2007.04.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 10/23/2022]
Abstract
Yeast self-perpetuating amyloids (prions) provide a convenient model for studying the cellular control of highly ordered aggregates involved in mammalian protein assembly disorders. The very ability of an amyloid to propagate a prion state in yeast is determined by its interactions with the stress-inducible chaperone Hsp104. Prion formation and propagation are also influenced by other stress-related chaperones (Hsp70 and Hsp40), and by alterations of the protein trafficking and degradation networks. Some stress conditions induce prion formation or loss. It is proposed that prions arise as byproducts of the reversible assembly of highly ordered complexes, protecting certain proteins during unfavorable conditions.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|