1
|
Abstract
The production of soluble amyloid-β oligomers (AβOs) and the activation of inflammation are two important early steps in the pathogenesis of Alzheimer's disease (AD). The central role of oligomers as responsible for the neuronal dysfunction associated with the clinical features has been extended to the other protein misfolding disorders definable, on this basis, as oligomeropathies. In AD, recent evidence indicates that the mechanism of inflammation as a consequence of neurodegeneration must be assessed in favor of a more direct role of glial activation in the alteration of synaptic function. Our own experimental models demonstrate the efficacy of anti-inflammatory treatments in preventing the cognitive deficits induced acutely by AβOs applied directly in the brain. Moreover, some promising clinical tools are based on immunological activation reducing the presence of cerebral Aβ deposits. However, the strategies based on the control of inflammatory factors as well as the amyloid aggregation show poor or non-therapeutic efficacy. Numerous studies have examined inflammatory factors in biological fluids as possible markers of the neuroinflammation in AD. In some cases, altered levels of cytokines or other inflammatory markers in cerebrospinal fluid correlate with the severity of the disease. Here we propose, according to the precision medicine principles, innovative therapeutic approaches to AD based on the patient's inflammatory profile/state. The earlier intervention and a multifactor approach are two other elements considered essential to improve the chances of effective therapy in AD.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | - Claudia Balducci
- Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| |
Collapse
|
2
|
Piccardo P, King D, Brown D, Barron RM. Variable tau accumulation in murine models with abnormal prion protein deposits. J Neurol Sci 2017; 383:142-150. [PMID: 29246602 PMCID: PMC6381323 DOI: 10.1016/j.jns.2017.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
The conversion of cellular prion protein (PrP) into a misfolded isoform is central to the development of prion diseases. However, the heterogeneous phenotypes observed in prion disease may be linked with the presence of other misfolded proteins in the brain. While hyperphosphorylated tau (p.tau) is characteristic of Alzheimer's disease (AD), p.tau is also observed in human prion diseases. To explore this association in the absence of potential effects due to aging, drug treatment, agonal stage and postmortem delay we analyzed p.tau and PrP immunopositivity in mouse models. Analyses were performed on mice inoculated with prion agents, and mice with PrP amyloid in the absence of prion disease. We observed that p.tau was consistently present in animals with prion infectivity (models that transmit disease upon serial passage). In contrast, p.tau was very rarely observed or absent in mice with PrP amyloid plaques in the absence of prion replication. These data indicate that the formation of p.tau is not linked to deposition of misfolded PrP, but suggest that the interaction between replication of infectivity and host factors regulate the formation of p.tau and may contribute to the heterogeneous phenotype of prion diseases.
Collapse
Affiliation(s)
- Pedro Piccardo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom.
| | - Declan King
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Deborah Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Rona M Barron
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
3
|
Forloni G, Artuso V, La Vitola P, Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov Disord 2016; 31:771-81. [DOI: 10.1002/mds.26624] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gianluigi Forloni
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | | | - Pietro La Vitola
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | - Claudia Balducci
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| |
Collapse
|
4
|
Wang X, Zhu D, Zhao C, He L, Du W. Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation. Metallomics 2015; 7:837-46. [PMID: 25856332 DOI: 10.1039/c5mt00029g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prion diseases are a group of infectious and fatal neurodegenerative disorders caused by the conformational conversion of a cellular prion protein (PrP) into its abnormal isoform PrP(Sc). PrP106-126 resembles PrP(Sc) in terms of physicochemical and biological characteristics and is used as a common model for the treatment of prion diseases. Inhibitory effects on fibril formation and neurotoxicity of the prion neuropeptide PrP106-126 have been investigated using metal complexes as potential inhibitors. Nevertheless, the binding mechanism between metal complexes and the peptide remains unclear. The present study is focused on the interaction of PrP106-126 with NAMI-A and NAMI-A-like ruthenium complexes, including KP418, KP1019, and KP1019-2. Results demonstrated that these ruthenium complexes could bind to PrP106-126 in a distinctive binding mode through electrostatic and hydrophobic interactions. NAMI-A-like ruthenium complexes can also effectively inhibit the aggregation and fibril formation of PrP106-126. The complex KP1019 demonstrated the optimal inhibitory ability upon peptide aggregation, and cytotoxicity because of its large aromatic ligand contribution. The studied complexes could also regulate the copper redox chemistry of PrP106-126 and effectually inhibit the formation of reactive oxygen species. Given these findings, ruthenium complexes with relatively low cellular toxicity may be used to develop potential pharmaceutical products against prion diseases.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | | | | | | | | |
Collapse
|
5
|
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2014; 24:1-10. [PMID: 25471398 PMCID: PMC5588216 DOI: 10.1159/000369101] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Striatum and entorhinal cortex atrophy in AD mouse models: MRI comprehensive analysis. Neurobiol Aging 2014; 36:776-88. [PMID: 25433456 DOI: 10.1016/j.neurobiolaging.2014.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease is experimentally modeled in transgenic (Tg) mice overexpressing mutated forms of the human amyloid precursor protein either alone or combined with mutated presenilins and tau. In the present study, we developed a systematic approach to compare double (TASTPM) and triple (APP/PS2/Tau) Tg mice by serial magnetic resonance imaging and spectroscopy analysis from 4 to 26 months of age to define homologous biomarkers between mice and humans. Hippocampal atrophy was found in Tg mice compared with WT. In APP/PS2/Tau the effect was age-dependent, whereas in TASTPM it was detectable from the first investigated time point. Importantly, both mice displayed an age-related entorhinal cortex thinning and robust striatal atrophy, the latter associated with a significant loss of synaptophysin. Hippocampal magnetic resonance spectroscopy revealed lower glutamate levels in both Tg mice and a selective myo-inositol increase in TASTPM. This noninvasive magnetic resonance imaging analysis, revealed common biomarkers between humans and mice, and could, thus, be promoted as a fully translational tool to be adopted in the preclinical investigation of therapeutic approaches.
Collapse
|
7
|
Ganzinger KA, Narayan P, Qamar SS, Weimann L, Ranasinghe RT, Aguzzi A, Dobson CM, McColl J, St George-Hyslop P, Klenerman D. Single-molecule imaging reveals that small amyloid-β1-42 oligomers interact with the cellular prion protein (PrP(C)). Chembiochem 2014; 15:2515-21. [PMID: 25294384 PMCID: PMC4371635 DOI: 10.1002/cbic.201402377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/17/2022]
Abstract
Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways.
Collapse
Affiliation(s)
- Kristina A Ganzinger
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Priyanka Narayan
- Present address: Whitehead Institute for Biomedical Research9 Cambridge Center, Cambridge, MA 02142 (USA)
| | - Seema S Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY (UK)
| | - Laura Weimann
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Rohan T Ranasinghe
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Adriano Aguzzi
- UniversitätsSpital Zürich, Institut für NeuropathologieSchmelzbergstrasse 12, 8091 Zürich (Switzerland)
| | - Christopher M Dobson
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - James McColl
- Present address: School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich NR4 7TJ (UK)
- James McColl, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK), Peter St. George-Hyslop, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY (UK), David Klenerman, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) E-mail: E-mail:
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY (UK)
- James McColl, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK), Peter St. George-Hyslop, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY (UK), David Klenerman, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) E-mail: E-mail:
| | - David Klenerman
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|
8
|
Piccardo P, Cervenak J, Bu M, Miller L, Asher DM. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, α-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys. J Gen Virol 2014; 95:1612-1618. [PMID: 24769839 DOI: 10.1099/vir.0.062083-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteins aggregate in several slowly progressive neurodegenerative diseases called 'proteinopathies'. Studies with cell cultures and transgenic mice overexpressing mutated proteins suggested that aggregates of one protein induced misfolding and aggregation of other proteins as well - a possible common mechanism for some neurodegenerative diseases. However, most proteinopathies are 'sporadic', without gene mutation or overexpression. Thus, proteinopathies in WT animals genetically close to humans might be informative. Squirrel monkeys infected with the classical bovine spongiform encephalopathy agent developed an encephalopathy resembling variant Creutzfeldt-Jakob disease with accumulations not only of abnormal prion protein (PrP(TSE)), but also three other proteins: hyperphosphorylated tau (p-tau), α-synuclein and ubiquitin; β-amyloid protein (Aβ) did not accumulate. Severity of brain lesions correlated with spongiform degeneration. No amyloid was detected. These results suggested that PrP(TSE) enhanced formation of p-tau and aggregation of α-synuclein and ubiquitin, but not Aβ, providing a new experimental model for neurodegenerative diseases associated with complex proteinopathies.
Collapse
Affiliation(s)
- Pedro Piccardo
- Laboratory of Bacterial and TSE Agents, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-313, Rockville, MD 20852, USA
| | - Juraj Cervenak
- Laboratory of Bacterial and TSE Agents, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-313, Rockville, MD 20852, USA
| | - Ming Bu
- Laboratory of Bacterial and TSE Agents, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-313, Rockville, MD 20852, USA
| | - Lindsay Miller
- Laboratory of Bacterial and TSE Agents, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-313, Rockville, MD 20852, USA
| | - David M Asher
- Laboratory of Bacterial and TSE Agents, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-313, Rockville, MD 20852, USA
| |
Collapse
|
9
|
Alzheimer’s disease: A gas model. The NADPH oxidase–Nitric Oxide system as an antibubble biomachinery. Med Hypotheses 2013; 81:976-87. [DOI: 10.1016/j.mehy.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/08/2013] [Indexed: 01/01/2023]
|
10
|
Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Chembiochem 2013; 14:1692-704. [PMID: 23983094 DOI: 10.1002/cbic.201300262] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is the most common of the protein misfolding ("amyloid") diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid β-peptides (Aβ peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
Collapse
Affiliation(s)
- Sebastian Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|