1
|
Pullen MY, Weihl CC, True HL. Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain. PLoS One 2020; 15:e0234207. [PMID: 32497100 PMCID: PMC7272046 DOI: 10.1371/journal.pone.0234207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
The misfolding and aggregation of proteins is often implicated in the development and progression of degenerative diseases. Heat shock proteins (HSPs), such as the ubiquitously expressed Type II Hsp40 molecular chaperone, DNAJB6, assist in protein folding and disaggregation. Historically, mutations within the DNAJB6 G/F domain have been associated with Limb-Girdle Muscular Dystrophy type 1D, now referred to as LGMDD1, a dominantly inherited degenerative disease. Recently, novel mutations within the J domain of DNAJB6 have been reported in patients with LGMDD1. Since novel myopathy-causing mutations in the Hsp40 J domain have yet to be characterized and both the function of DNAJB6 in skeletal muscle and the clients of this chaperone are unknown, we set out to assess the effect of these mutations on chaperone function using the genetically tractable yeast system. The essential yeast Type II Hsp40, Sis1, is homologous to DNAJB6 and is involved in the propagation of yeast prions. Using phenotypic, biochemical, and functional assays we found that homologous mutations in the Sis1 J domain differentially alter the processing of specific yeast prion strains, as well as a non-prion substrate. These data suggest that the newly-identified mutations in the J domain of DNAJB6 cause aberrant chaperone function that leads to the pathogenesis in LGMDD1.
Collapse
Affiliation(s)
- Melanie Y. Pullen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| |
Collapse
|
2
|
Skuodas S, Clemons A, Hayes M, Goll A, Zora B, Weeks DL, Phillips BT, Fassler JS. The ABCF gene family facilitates disaggregation during animal development. Mol Biol Cell 2020; 31:1324-1345. [PMID: 32320318 PMCID: PMC7353142 DOI: 10.1091/mbc.e19-08-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.
Collapse
Affiliation(s)
- Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Michael Hayes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Ashley Goll
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Betul Zora
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
3
|
Ryzhova TA, Sopova JV, Zadorsky SP, Siniukova VA, Sergeeva AV, Galkina SA, Nizhnikov AA, Shenfeld AA, Volkov KV, Galkin AP. Screening for amyloid proteins in the yeast proteome. Curr Genet 2017; 64:469-478. [PMID: 29027580 DOI: 10.1007/s00294-017-0759-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023]
Abstract
The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer's, Parkinson's Huntington's diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA-LC-MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.
Collapse
Affiliation(s)
- Tatyana A Ryzhova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Julia V Sopova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Sergey P Zadorsky
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Vera A Siniukova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Aleksandra V Sergeeva
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Anton A Nizhnikov
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation.,All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg, 196608, Russian Federation
| | - Aleksandr A Shenfeld
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Kirill V Volkov
- Research Park, Research Resource Center "Molecular and Cell Technologies", St. Petersburg State University, St. Petersburg, Russian Federation
| | - Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation. .,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation.
| |
Collapse
|
4
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
5
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
6
|
Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL. Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers. J Biol Chem 2015; 289:21120-30. [PMID: 24920671 DOI: 10.1074/jbc.m114.572461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone network protects against the toxic misfolding and aggregation of proteins. Disruption of this network leads to a variety of protein conformational disorders. One such example recently discovered is limb-girdle muscular dystrophy type 1D (LGMD1D), which is caused by mutation of the HSP40 chaperone DNAJB6. All LGMD1D-associated mutations localize to the conserved G/F domain of DNAJB6, but the function of this domain is largely unknown. Here, we exploit the yeast HSP40 Sis1, which has known aggregation-prone client proteins, to gain insight into the role of the G/F domain and its significance in LGMD1D pathogenesis. Strikingly, we demonstrate that LGMD1D mutations in a Sis1-DNAJB6 chimera differentially impair the processing of specific conformers of two yeast prions, [RNQ+] and [PSI+]. Importantly, these differences do not simply correlate to the sensitivity of these prion strains to changes in chaperone levels. Additionally, we analyzed the effect of LGMD1D-associated DNAJB6 mutations on TDP-43, a protein known to form inclusions in LGMD1D. We show that the DNAJB6 G/F domain mutants disrupt the processing of nuclear TDP-43 stress granules in mammalian cells. These data suggest that the G/F domain mediates chaperone-substrate interactions in a manner that extends beyond recognition of a particular client and to a subset of client conformers. We propose that such selective chaperone disruption may lead to the accumulation of toxic aggregate conformers and result in the development of LGMD1D and perhaps other protein conformational disorders.
Collapse
|
7
|
Stein KC, True HL. Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions. PLoS Genet 2014; 10:e1004337. [PMID: 24811344 PMCID: PMC4014422 DOI: 10.1371/journal.pgen.1004337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 11/27/2022] Open
Abstract
Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression.
Collapse
Affiliation(s)
- Kevin C. Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Dulle JE, Stein KC, True HL. Regulation of the Hsp104 middle domain activity is critical for yeast prion propagation. PLoS One 2014; 9:e87521. [PMID: 24466354 PMCID: PMC3900729 DOI: 10.1371/journal.pone.0087521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in mammals, yeast prion proteins, and their ability to undergo conformational conversion into a prion state, are proposed to play a functional role in yeast biology. The chaperone Hsp104, a AAA+ ATPase, is essential for yeast prion propagation. Hsp104 fragments large prion aggregates to generate a population of smaller oligomers that can more readily convert soluble monomer and be transmitted to daughter cells. Here, we show that the middle (M) domain of Hsp104, and its mobility, plays an integral part in prion propagation. We generated and characterized mutations in the M-domain of Hsp104 that are predicted to stabilize either a repressed or de-repressed conformation of the M-domain (by analogy to ClpB in bacteria). We show that the predicted stabilization of the repressed conformation inhibits general chaperone activity. Mutation to the de-repressed conformation, however, has differential effects on ATP hydrolysis and disaggregation, suggesting that the M-domain is involved in coupling these two activities. Interestingly, we show that changes in the M-domain differentially affect the propagation of different variants of the [PSI+] and [RNQ+] prions, which indicates that some prion variants are more sensitive to changes in the M-domain mobility than others. Thus, we provide evidence that regulation of the M-domain of Hsp104 is critical for efficient prion propagation. This shows the importance of elucidating the function of the M-domain in order to understand the role of Hsp104 in the propagation of different prions and prion variants.
Collapse
Affiliation(s)
- Jennifer E. Dulle
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kevin C. Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dulle JE, True HL. Low activity of select Hsp104 mutants is sufficient to propagate unstable prion variants. Prion 2013; 7:394-403. [PMID: 24064980 DOI: 10.4161/pri.26547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The molecular chaperone network plays a critical role in the formation and propagation of self-replicating yeast prions. Not only do individual prions differ in their requirements for certain chaperones, but structural variants of the same prion can also display distinct dependences on the chaperone machinery, specifically Hsp104. The AAA+ ATPase Hsp104 is a disaggregase required for the maintenance of most known yeast prions. As a key component in the propagation of prions, understanding how Hsp104 differs in its interaction with specific variants is crucial to understanding how prion variants may be selected or evolve. Here, we investigate two novel mutations in Hsp104, hsp104-G254D, and hsp104-G730D, which allow us to elucidate some mechanistic features of Hsp104 disaggregation and its requirement for activity in propagating specific prion variants. Both Hsp104 mutants propagate the [PSI+] prion to some extent, but show a high rate of prion loss. Both Hsp104-G254D and Hsp104-G730D display reduced biochemical activity, yet differ in their ability to efficiently resolubilize disordered, heat-aggregated substrates. Additionally, both mutants impair weak [PSI+] propagation, but are capable of propagating the less stable strong [PSI+] variant to some extent. One of the Hsp104 mutants also has the ability to propagate one variant of the [RNQ+] prion. Thus, our data suggest that changes in Hsp104 activity limit substrate disaggregation in a manner that depends more on the stability of the substrate than the nature of the aggregated species.
Collapse
Affiliation(s)
- Jennifer E Dulle
- Department of Cell Biology and Physiology; Washington University in St. Louis; St. Louis, MO USA
| | - Heather L True
- Department of Cell Biology and Physiology; Washington University in St. Louis; St. Louis, MO USA
| |
Collapse
|
10
|
Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, True HL, Weihl CC, Baloh RH. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum Mol Genet 2013; 23:157-70. [PMID: 23962724 DOI: 10.1093/hmg/ddt408] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 aggregation in the cytoplasm or nucleus is a key feature of the pathology of amyotrophic lateral sclerosis and frontotemporal dementia and is observed in numerous other neurodegenerative diseases, including Alzheimer's disease. Despite this fact, the inciting events leading to TDP-43 aggregation remain unclear. We observed that endogenous TDP-43 undergoes reversible aggregation in the nucleus after the heat shock and that this behavior is mediated by the C-terminal prion domain. Substitution of the prion domain from TIA-1 or an authentic yeast prion domain from RNQ1 into TDP-43 can completely recapitulate heat shock-induced aggregation. TDP-43 is constitutively bound to members of the Hsp40/Hsp70 family, and we found that heat shock-induced TDP-43 aggregation is mediated by the availability of these chaperones interacting with the inherently disordered C-terminal prion domain. Finally, we observed that the aggregation of TDP-43 during heat shock led to decreased binding to hnRNPA1, and a change in TDP-43 RNA-binding partners suggesting that TDP-43 aggregation alters its function in response to misfolded protein stress. These findings indicate that TDP-43 shares properties with physiologic prions from yeast, in that self-aggregation is mediated by a Q/N-rich disordered domain, is modulated by chaperone proteins and leads to altered function of the protein. Furthermore, they indicate that TDP-43 aggregation is regulated by chaperone availability, explaining the recurrent observation of TDP-43 aggregates in degenerative diseases of both the brain and muscle where protein homeostasis is disrupted.
Collapse
Affiliation(s)
- Maria Udan-Johns
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Stein KC, True HL. The [RNQ+] prion: a model of both functional and pathological amyloid. Prion 2011; 5:291-8. [PMID: 22052347 DOI: 10.4161/pri.18213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
12
|
Kurahashi H, Pack CG, Shibata S, Oishi K, Sako Y, Nakamura Y. [PSI(+)] aggregate enlargement in rnq1 nonprion domain mutants, leading to a loss of prion in yeast. Genes Cells 2011; 16:576-89. [PMID: 21453425 DOI: 10.1111/j.1365-2443.2011.01511.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[PIN(+)] is the prion form of the Rnq1 protein of unknown function in Saccharomyces cerevisiae. A glutamine/asparagine (Q/N)-rich C-terminal domain is necessary for the propagation of [PIN(+)], whereas the N-terminal region is non-Q/N-rich and considered the nonprion domain. Here, we isolated numerous single-amino-acid mutations in Rnq1, phenotypically similar to Rnq1Δ100, which inhibit [PSI(+)] propagation in the [PIN(+)] state, but not in the [pin(-)] state, when overproduced. The dynamics of the prion aggregates was analyzed by semi-denaturing detergent-agarose gel electrophoresis and fluorescence correlation spectroscopy. The results indicated that [PSI(+)] aggregates were enlarged in mother cells and, instead, not apparently transmitted into daughter cells. Under these conditions, the activity of Hsp104, a known prion disaggregase, was not affected when monitored for the thermotolerance of the rnq1 mutants. These [PSI(+)]-inhibitory rnq1 mutations did not affect [PIN(+)] propagation itself when over-expressed from a strong promoter, but instead destabilized [PIN(+)] when expressed from the weak authentic RNQ1 promoter. The majority of these mutated residues are mapped to the surface, and on one side, of contiguous α-helices of the nonprion domain of Rnq1, suggesting its involvement in interactions with a prion or a factor necessary for prion development.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Stein KC, True HL. The [RNQ+] prion: a model of both functional and pathological amyloid. Prion 2011; 5. [PMID: 22052347 PMCID: PMC4012398 DOI: 10.4161/pri.5.4.18213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts.
Collapse
|
14
|
Kalastavadi T, True HL. Analysis of the [RNQ+] prion reveals stability of amyloid fibers as the key determinant of yeast prion variant propagation. J Biol Chem 2010; 285:20748-55. [PMID: 20442412 DOI: 10.1074/jbc.m110.115303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI(+)] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ(+)] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ(+)] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ(+)] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI(+)] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins.
Collapse
Affiliation(s)
- Tejas Kalastavadi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MI 63108, USA
| | | |
Collapse
|