1
|
De Mario A, Peggion C, Massimino ML, Norante RP, Zulian A, Bertoli A, Sorgato MC. The Link of the Prion Protein with Ca 2+ Metabolism and ROS Production, and the Possible Implication in Aβ Toxicity. Int J Mol Sci 2019; 20:ijms20184640. [PMID: 31546771 PMCID: PMC6770541 DOI: 10.3390/ijms20184640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023] Open
Abstract
The cellular prion protein (PrPC) is an ubiquitous cell surface protein mostly expressed in neurons, where it localizes to both pre- and post-synaptic membranes. PrPC aberrant conformers are the major components of mammalian prions, the infectious agents responsible for incurable neurodegenerative disorders. PrPC was also proposed to bind aggregated misfolded proteins/peptides, and to mediate their neurotoxic signal. In spite of long-lasting research, a general consensus on the precise pathophysiologic mechanisms of PrPC has not yet been reached. Here we review our recent data, obtained by comparing primary neurons from PrP-expressing and PrP-knockout mice, indicating a central role of PrPC in synaptic transmission and Ca2+ homeostasis. Indeed, by controlling gene expression and signaling cascades, PrPC is able to optimize glutamate secretion and regulate Ca2+ entry via store-operated channels and ionotropic glutamate receptors, thereby protecting neurons from threatening Ca2+ overloads and excitotoxicity. We will also illustrate and discuss past and unpublished results demonstrating that Aβ oligomers perturb Ca2+ homeostasis and cause abnormal mitochondrial accumulation of reactive oxygen species by possibly affecting the PrP-dependent downregulation of Fyn kinase activity.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Caterina Peggion
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Maria Lina Massimino
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Rosa Pia Norante
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandra Zulian
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
2
|
Bertoli A, Sorgato MC. Neuronal pathophysiology featuring PrP C and its control over Ca 2+ metabolism. Prion 2018; 12:28-33. [PMID: 29227178 DOI: 10.1080/19336896.2017.1412912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) is an intracellular second messenger that ubiquitously masters remarkably diverse biological processes, including cell death. Growing evidence substantiates an involvement of the prion protein (PrPC) in regulating neuronal Ca2+ homeostasis, which could rationalize most of the wide range of functions ascribed to the protein. We have recently demonstrated that PrPC controls extracellular Ca2+ fluxes, and mitochondrial Ca2+ uptake, in neurons stimulated with glutamate (De Mario et al., J Cell Sci 2017; 130:2736-46), suggesting that PrPC protects neurons from threatening Ca2+ overloads and excitotoxicity. In light of these results and of recent reports in the literature, here we review the connection of PrPC with Ca2+ metabolism and also provide some speculative hints on the physiologic outcomes of this link. In addition, because PrPC is implicated in neurodegenerative diseases, including prion disorders and Alzheimer's disease, we will also discuss possible ways by which disruption of PrPC-Ca2+ association could be mechanistically connected with these pathologies.
Collapse
Affiliation(s)
- Alessandro Bertoli
- a Department of Biomedical Sciences , University of Padova , Padova , Italy.,b Padova Neuroscience Center , and University of Padova , Padova , Italy.,c CNR - Neuroscience Institute, University of Padova , Padova , Italy
| | - M Catia Sorgato
- a Department of Biomedical Sciences , University of Padova , Padova , Italy.,c CNR - Neuroscience Institute, University of Padova , Padova , Italy
| |
Collapse
|
3
|
Cellular Prion Protein Promotes Neuronal Differentiation of Adipose-Derived Stem Cells by Upregulating miRNA-124. J Mol Neurosci 2016; 59:48-55. [PMID: 26947028 DOI: 10.1007/s12031-016-0733-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
The cellular prion protein (PrP(C)) is a highly conserved glycoprotein anchored by glycosylphosphatidylinositol (GPI) to the cell surface and is also the source of pathogenic agent of scrapie prion protein (PrP(Sc)). Numerous researches have suggested putative physiological roles for PrP(C), including protection from ischemic and excitotoxic lesions, and participation in cell signaling and differentiation. Here, we demonstrated that PrP(C) positively regulates neuronal differentiation of mouse adipose-derived stem cells (ADSCs). The small C-terminal domain phosphatase 1 (SCP1) expression was knocked down by gene silencing. The mRNA expression of miRNA-124 and PrP(C) was measured with quantitative PCR. Western blot analysis was used to detect the protein levels of nestin, βIII-tubulin, and SCP1, and dual-luciferase reporter assay was performed to test the target of miRNA-124. The expression level of PrP(C) was found to increase steadily during neuron-like differentiation process, and PrP(C) knockout resulted in the reduction of neuron-like cell markers. We further showed that miRNA-124 could directly target SCP1-3'-untranslated region to decrease small C-terminal domain phosphatase 1 (SCP1) SCP1, and that miRNA-124 expression is regulated by PrP(C). Our results suggest that PrP(C) may play a key role in the neuronal differentiation of ADSC through modulating miRNA-124-SCP1 axis. To date, this is the first time strong evidence for the involvement of PrP(C) in the neuronal differentiation of ADSC is reported.
Collapse
|
4
|
Massimino ML, Peggion C, Loro F, Stella R, Megighian A, Scorzeto M, Blaauw B, Toniolo L, Sorgato MC, Reggiani C, Bertoli A. Age-dependent neuromuscular impairment in prion protein knockout mice. Muscle Nerve 2015; 53:269-79. [DOI: 10.1002/mus.24708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
| | - Caterina Peggion
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Federica Loro
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Roberto Stella
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Aram Megighian
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Michele Scorzeto
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Bert Blaauw
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Luana Toniolo
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Maria Catia Sorgato
- CNR Neuroscience Institute, University of Padova
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Carlo Reggiani
- CNR Neuroscience Institute, University of Padova
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| |
Collapse
|
5
|
De Mario A, Castellani A, Peggion C, Massimino ML, Lim D, Hill AF, Sorgato MC, Bertoli A. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci 2015; 9:416. [PMID: 26578881 PMCID: PMC4623396 DOI: 10.3389/fncel.2015.00416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 11/23/2022] Open
Abstract
The prion protein (PrPC) is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-β (Aβ) oligomers associated with Alzheimer’s disease (AD), and that PrPC-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn. Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons (CGN) expressing, or not, PrPC, allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE) and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons. We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1–42) oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanizm for Aβ-induced neuronal Ca2+ dyshomeostasis.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Science, University of Padova Padova, Italy
| | - Angela Castellani
- Department of Biomedical Science, University of Padova Padova, Italy
| | - Caterina Peggion
- Department of Biomedical Science, University of Padova Padova, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Science, University of Piemonte Orientale Novara, Italy
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - M Catia Sorgato
- Department of Biomedical Science, University of Padova Padova, Italy ; CNR Neuroscience Institute, University of Padova Padova, Italy
| | | |
Collapse
|
6
|
Liebert A, Bicknell B, Adams R. Prion Protein Signaling in the Nervous System—A Review and Perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.4137/sti.s12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neurodegenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential targets for the treatment of disease influenced by PrPC are discussed.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Health Science, University of Sydney, Australia
| | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | | |
Collapse
|
7
|
Zanetti F, Carpi A, Menabò R, Giorgio M, Schulz R, Valen G, Baysa A, Massimino ML, Sorgato MC, Bertoli A, Di Lisa F. The cellular prion protein counteracts cardiac oxidative stress. Cardiovasc Res 2014; 104:93-102. [PMID: 25139744 DOI: 10.1093/cvr/cvu194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS The cellular prion protein, PrP(C), whose aberrant isoforms are related to prion diseases of humans and animals, has a still obscure physiological function. Having observed an increased expression of PrP(C) in two in vivo paradigms of heart remodelling, we focused on isolated mouse hearts to ascertain the capacity of PrP(C) to antagonize oxidative damage induced by ischaemic and non-ischaemic protocols. METHODS AND RESULTS Hearts isolated from mice expressing PrP(C) in variable amounts were subjected to different and complementary oxidative perfusion protocols. Accumulation of reactive oxygen species, oxidation of myofibrillar proteins, and cell death were evaluated. We found that overexpressed PrP(C) reduced oxidative stress and cell death caused by post-ischaemic reperfusion. Conversely, deletion of PrP(C) increased oxidative stress during both ischaemic preconditioning and perfusion (15 min) with H2O2. Supporting its relation with intracellular systems involved in oxidative stress, PrP(C) was found to influence the activity of catalase and, for the first time, the expression of p66(Shc), a protein implicated in oxidative stress-mediated cell death. CONCLUSIONS Our data demonstrate that PrP(C) contributes to the cardiac mechanisms antagonizing oxidative insults.
Collapse
Affiliation(s)
- Filippo Zanetti
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Andrea Carpi
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Roberta Menabò
- CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität, Gießen, Germany
| | - Guro Valen
- Department of Physiology, University of Oslo, Oslo, Norway
| | - Anton Baysa
- Department of Physiology, University of Oslo, Oslo, Norway
| | | | - Maria Catia Sorgato
- Department of Biomedical Science, University of Padova, Padova, Italy CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | | | - Fabio Di Lisa
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Wang H, Ren CH, Gunawardana CG, Schmitt-Ulms G. Overcoming barriers and thresholds - signaling of oligomeric Aβ through the prion protein to Fyn. Mol Neurodegener 2013; 8:24. [PMID: 23856335 PMCID: PMC3722066 DOI: 10.1186/1750-1326-8-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Evidence has been mounting for an involvement of the prion protein (PrP) in a molecular pathway assumed to play a critical role in the etiology of Alzheimer disease. A currently popular model sees oligomeric amyloid β (oAβ) peptides bind directly to PrP to emanate a signal that causes activation of the cytoplasmic tyrosine kinase Fyn, an essential player in a cascade of events that ultimately leads to NMDA receptor-mediated excitotoxicity and hyper-phosphorylation of tau. The model does not reveal, however, how extracellular binding of oAβ to PrP is communicated across the plasma membrane barrier to affect activation of Fyn. A scenario whereby PrP may adapt a transmembrane topology to affect Fyn activation in the absence of additional partners is currently not supported by evidence. A survey of known candidate PrP interactors leads to a small number of molecules that are known to acquire a transmembrane topology and understood to contribute to Fyn activation. Because multiple signaling pathways converge onto Fyn, a realistic model needs to take into account a reality of Fyn acting as a hub that integrates signals from multiple inhibitory and activating effectors. To clarify the role of PrP in oAβ-dependent excitotoxicity, future studies may need to incorporate experimental designs that can probe the contributions of Fyn modulator pathways and rely on analogous readouts, rather than threshold effects, known to underlie excitotoxic signaling.
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6 Queen's Park Crescent West, Toronto, Ontario M5S 3H2, Canada
| | | | | | | |
Collapse
|
9
|
Altered behavioral aspects of aged mice lacking the cellular prion protein. Physiol Behav 2013; 119:86-91. [DOI: 10.1016/j.physbeh.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/27/2013] [Accepted: 06/05/2013] [Indexed: 11/22/2022]
|
10
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Abstract
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
12
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
13
|
Liang J, Wang W, Sorensen D, Medina S, Ilchenko S, Kiselar J, Surewicz WK, Booth SA, Kong Q. Cellular prion protein regulates its own α-cleavage through ADAM8 in skeletal muscle. J Biol Chem 2012; 287:16510-20. [PMID: 22447932 DOI: 10.1074/jbc.m112.360891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed cellular prion protein (PrP(C)) is subjected to the physiological α-cleavage at a region critical for both PrP toxicity and the conversion of PrP(C) to its pathogenic prion form (PrP(Sc)), generating the C1 and N1 fragments. The C1 fragment can activate caspase 3 while the N1 fragment is neuroprotective. Recent articles indicate that ADAM10, ADAM17, and ADAM9 may not play a prominent role in the α-cleavage of PrP(C) as previously thought, raising questions on the identity of the responsible protease(s). Here we show that, ADAM8 can directly cleave PrP to generate C1 in vitro and PrP C1/full-length ratio is greatly decreased in the skeletal muscles of ADAM8 knock-out mice; in addition, the PrP C1/full-length ratio is linearly correlated with ADAM8 protein level in myoblast cell line C2C12 and in skeletal muscle tissues of transgenic mice. These results indicate that ADAM8 is the primary protease responsible for the α-cleavage of PrP(C) in muscle cells. Moreover, we found that overexpression of PrP(C) led to up-regulation of ADAM8, suggesting that PrP(C) may regulate its own α-cleavage through modulating ADAM8 activity.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stella R, Cifani P, Peggion C, Hansson K, Lazzari C, Bendz M, Levander F, Sorgato MC, Bertoli A, James P. Relative Quantification of Membrane Proteins in Wild-Type and Prion Protein (PrP)-Knockout Cerebellar Granule Neurons. J Proteome Res 2011; 11:523-36. [DOI: 10.1021/pr200759m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roberto Stella
- Department of Biological Chemistry, University of Padova, Italy
| | - Paolo Cifani
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Karin Hansson
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Maria Bendz
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fredrik Levander
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | | | - Peter James
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| |
Collapse
|
15
|
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are lethal neurodegenerative disorders caused by the infectious agent named prion, whose main constituent is an aberrant conformational isoform of the cellular prion protein, PrP(C) . The mechanisms of prion-associated neurodegeneration and the physiologic function of PrP(C) are still unclear, although it is now increasingly acknowledged that PrP(C) plays a role in cell differentiation and survival. PrP(C) thus exhibits dichotomic attributes, as it can switch from a benign function under normal conditions to the triggering of neuronal death during disease. By reviewing data from models of prion infection and PrP-knockout paradigms, here we discuss the possibility that Ca(2+) is the hidden factor behind the multifaceted behavior of PrP(C) . By featuring in almost all processes of cell signaling, Ca(2+) might explain diverse aspects of PrP(C) pathophysiology, including the recently proposed one in which PrP(C) acts as a mediator of synaptic degeneration in Alzheimer's disease.
Collapse
|
16
|
Lazzari C, Peggion C, Stella R, Massimino ML, Lim D, Bertoli A, Sorgato MC. Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem 2011; 116:881-90. [DOI: 10.1111/j.1471-4159.2010.07015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Fish models in prion biology: underwater issues. Biochim Biophys Acta Mol Basis Dis 2010; 1812:402-14. [PMID: 20933080 DOI: 10.1016/j.bbadis.2010.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 09/11/2010] [Accepted: 09/21/2010] [Indexed: 12/14/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
|
18
|
Abstract
It is now well established that the conversion of the cellular prion protein, PrP(C), into its anomalous conformer, PrP(Sc), is central to the onset of prion disease. However, both the mechanism of prion-related neurodegeneration and the physiologic role of PrP(C) are still unknown. The use of animal and cell models has suggested a number of putative functions for the protein, including cell signaling, adhesion, proliferation, and differentiation. Given that skeletal muscles express significant amounts of PrP(C) and have been related to PrP(C) pathophysiology, in the present study, we used skeletal muscles to analyze whether the protein plays a role in adult morphogenesis. We employed an in vivo paradigm that allowed us to compare the regeneration of acutely damaged hind-limb tibialis anterior muscles of mice expressing, or not expressing, PrP(C). Using morphometric and biochemical parameters, we provide compelling evidence that the absence of PrP(C) significantly slows the regeneration process compared to wild-type muscles by attenuating the stress-activated p38 pathway, and the consequent exit from the cell cycle, of myogenic precursor cells. Demonstrating the specificity of this finding, restoring PrP(C) expression completely rescued the muscle phenotype evidenced in the absence of PrP(C).
Collapse
|
19
|
Chen S, Yadav SP, Surewicz WK. Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 2010; 285:26377-83. [PMID: 20576610 DOI: 10.1074/jbc.m110.145516] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Soluble oligomers of Abeta42 peptide are believed to play a major role in the pathogenesis of Alzheimer disease (AD). It was recently found that at least some of the neurotoxic effects of these oligomers may be mediated by specific binding to the prion protein, PrP(C), on the cell surface (Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Nature 457, 1128-1132). Here we characterized the interaction between synthetic Abeta42 oligomers and the recombinant human prion protein (PrP) using two biophysical techniques: site-directed spin labeling and surface plasmon resonance. Our data indicate that this binding is highly specific for a particular conformation adopted by the peptide in soluble oligomeric species. The binding appears to be essentially identical for the Met(129) and Val(129) polymorphic forms of human PrP, suggesting that the role of PrP codon 129 polymorphism as a risk factor in AD is due to factors unrelated to the interaction with Abeta oligomers. It was also found that in addition to the previously identified approximately 95-110 segment, the second region of critical importance for the interaction with Abeta42 oligomers is a cluster of basic residues at the extreme N terminus of PrP (residues 23-27). The deletion of any of these segments results in a major loss of the binding function, indicating that these two regions likely act in concert to provide a high affinity binding site for Abeta42 oligomers. This insight may help explain the interplay between the postulated protective and pathogenic roles of PrP in AD and may contribute to the development of novel therapeutic strategies as well.
Collapse
Affiliation(s)
- Shugui Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|