1
|
Rauter M, Nietz D, Kunze G. Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms 2022; 10:1316. [PMID: 35889035 PMCID: PMC9325033 DOI: 10.3390/microorganisms10071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoethyl adipate (MEA) is a highly valuable monoester for activating resistance mechanisms and improving protective effects in pathogen-attacked plants. The cutinase ACut2 from the non-conventional yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) was used for its synthesis by the desymmetrization of dicarboxylic acid diester diethyl adipate (DEA). Up to 78% MEA with 19% diacid adipic acid (AA) as by-product could be synthesized by the unpurified ACut2 culture supernatant from the B. raffinosifermentans overexpression strain. By adjusting pH and enzyme concentration, the selectivity of the free ACut2 culture supernatant was increased, yielding 95% MEA with 5% AA. Selectivity of the carrier immobilized ACut2 culture supernatant was also improved by pH adjustment during immobilization, as well as carrier enzyme loading, ultimately yielding 93% MEA with an even lower AA concentration of 3-4%. Thus, optimizations enabled the selective hydrolysis of DEA into MEA with only a minor AA impurity. In the up-scaling, a maximum of 98% chemical and 87.8% isolated MEA yield were obtained by the adsorbed enzyme preparation with a space time yield of 2.6 g L-1 h-1. The high monoester yields establish the ACut2-catalyzed biosynthesis as an alternative to existing methods.
Collapse
Affiliation(s)
- Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3–5, Gatersleben, D-06466 Stadt Seeland, Germany;
| | - Daniela Nietz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
2
|
Abstract
Halotolerant plant-growth-promoting rhizobacteria (PGPR) could not only promote plant growth, but also help in counteracting the detrimental effects of salt stress. In the present study, a total of 76 bacteria were isolated from the rhizosphere, non-rhizospheric soil and endophytes of the halophyte Salsola tetrandra, collected from natural saline soils in Algeria. Phylogenetic analysis based on the 16S rDNA sequence of Gram-negative bacteria (n = 51) identified, showed seventeen representative isolates grouped into four genera (Pseudomonas, Acinetobacter, Enterobacter, and Providencia). These bacterial isolates that exhibited different PGPR traits were selected and tested for their ability to tolerate different abiotic stress (NaCl, PEG8000, and pH). The majority of isolates were drought tolerant (60% of PEG8000) and had an optimal growth at high pH values (pH 9 and 11) and some strains tolerated 2 M of NaCl. Strains identified as Enterobacter xiangfangensis BE1, Providencia rettgeri BR5 and Pseudomonas stutzeri MLR6 showed high capacity of adaptation on their PGP traits. The salt-tolerant isolates were finally chosen to promote growth and enhance salt tolerance, separately or combined, of Arabidopsis thaliana (Col-0) exposed or not to 0.1 M NaCl, by following fresh and root weight, primary root elongation and lateral root number. The best bacterial effect was recorded for the MLR6 strain in increasing shoot fresh weight and for BE1 in terms of root fresh weight in the absence of salt stress. At stressed conditions, all growth parameters declined. However, inoculation of Arabidopsis thaliana with the three bacterial strains (MLR6, BE1 and BR5), single or in co-culture, conferred an increase in the shoot weight, primary root length and lateral root number. The use of these strains separately or combined as biofertilizers seems to be a powerful tool in the development of sustainable agriculture in saline soils.
Collapse
|
3
|
AlKahtani MDF, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HIM, Abdelaal KAA. Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet. Antioxidants (Basel) 2021; 10:antiox10030398. [PMID: 33800758 PMCID: PMC8000334 DOI: 10.3390/antiox10030398] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters.
Collapse
Affiliation(s)
- Muneera D. F. AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Yaser M. Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 2455-11451, Saudi Arabia;
- Rice Research & Training Center, Rice Biotechnology Lab, Field Crops Research Institute, Sakha, Kafr EL-Sheikh 33717, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Latifa Al Husnain
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Hussah I. M. AlGwaiz
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Khaled A. A. Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
- Correspondence:
| |
Collapse
|
4
|
Isah T. Changes in the biochemical parameters of albino, hyperhydric and normal green leaves of Caladium bicolor cv. “Bleeding hearts” in vitro long-term cultures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:88-98. [DOI: 10.1016/j.jphotobiol.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022]
|
5
|
Poór P, Borbély P, Czékus Z, Takács Z, Ördög A, Popović B, Tari I. Comparison of changes in water status and photosynthetic parameters in wild type and abscisic acid-deficient sitiens mutant of tomato (Solanum lycopersicum cv. Rheinlands Ruhm) exposed to sublethal and lethal salt stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:130-140. [PMID: 30537600 DOI: 10.1016/j.jplph.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) regulates many salt stress-related processes of plants such as water balance, osmotic stress tolerance and photosynthesis. In this study we investigated the responses of wild type (WT) and the ABA-deficient sitiens mutant of tomato (Solanum lycopersicum cv. Rheinlands Ruhm) to sublethal and lethal salt stress elicited by 100 mM and 250 mM NaCl, respectively. Sitiens mutants displayed much higher decrease in water potential, stomatal conductance and net CO2 assimilation rate under high salinity, especially at lethal salt stress, than the WT. However, ABA deficiency in sitiens caused more severe osmotic stress and more moderate ionic stress, higher K+/Na+ ratio, in leaf tissues of plants exposed to salt stress. The higher salt concentration caused irreversible damage to Photosystem II (PSII) reaction centres, severe reduction in the linear photosynthetic electron transport rate and in the effective quantum yields of PSII and PSI in sitiens plants. The cyclic electron transport (CET) around PSI, which is an effective defence mechanism against the damage caused by photoinhibition in PSI, decreased in sitiens mutants, while WT plants were able to increase CET under salt stress. This suggests that the activation of CET needs active ABA synthesis and/or signalling. In spite of ABA deficiency, proline accumulation could alleviate the stress injury at sublethal salt stress in the mutants but its accumulation was not sufficient at lethal salt stress.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Péter Borbély
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Biological Doctoral School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Biological Doctoral School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52, Szeged, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Boris Popović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
6
|
Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, Robineau M, Esmaeel Q, Jacquard C, Vaillant-Gaveau N, Clément C, Aït Barka E, Sanchez L. Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J Appl Microbiol 2018; 125:1836-1851. [PMID: 30142236 DOI: 10.1111/jam.14082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The study aimed for evaluate the efficacy of Pseudomonas knackmussii MLR6 on growth promotion, photosynthetic responses, pigment contents and gene expression of the plant model Arabidopsis thaliana under NaCl stress. METHODS AND RESULTS The strain MLR6 was isolated from the rhizopshere of the halophyte Salsola tetrandra collected from a natural saline Algerian soil. Results showed the ability of MLR6 to induce plant growth promoting traits even under NaCl stress. The inoculation with MLR6 improved the stomatal conductance, the transpiration rate, the total chlorophyll and carotenoids contents under salt stress. It conferred also an increase of fresh/dry weight as well as plant height. MLR6 inoculation further provided a positive effect on cell membrane stability by reducing the electrolyte leakage and priming the ROS accumulation after the salt exposition. Additionally, the expression of NHX1, HKT1, SOS2, and SOS3 as well as SAG13 and PR1 was maintained in MLR6-bacterized plant at a similar level of controls. CONCLUSIONS The inoculation of Arabidopsis thaliana with MLR6 improves plant growth and reduces damages caused by salt stress. SIGNIFICANCE AND IMPACT OF STUDY The use of Pseudomonas knackmussii MLR6 appears as a promising strategy to improve the sustainable agriculture under saline conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nour El Houda Rabhi
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Allaoua Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Hafssa Cherif-Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Bilal Yahiaoui
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Abdelmalek Lekired
- Laboratoire Microorganismes et Biomolécules Actives LMBA, Université de Tunis El Manar
| | - Mathilde Robineau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
7
|
Marsic NK, Vodnik D, Mikulic-Petkovsek M, Veberic R, Sircelj H. Photosynthetic Traits of Plants and the Biochemical Profile of Tomato Fruits Are Influenced by Grafting, Salinity Stress, and Growing Season. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5439-5450. [PMID: 29757634 DOI: 10.1021/acs.jafc.8b00169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Changes in the photosynthetic traits of plants and metabolic composition of fruits of two tomato cultivars, grafted onto two rootstocks, grown in three salinity levels were studied in two growing periods during the season. Increased salinity stress conditions lowered water potential, stomatal conductance, and transpiration rate of grafted tomato plants, in both growing periods. Water deficit induced stomatal closure, which resulted in stomatal limitation of photosynthesis. The proline content in tomato leaves increased and was closely correlated with salinity. Some of the quality parameters of tomato fruits were affected by rootstock. The sugar/acid ratio was the highest in fruits of 'Belle'/'Maxifort' grafts. With increasing salt stress conditions from 40 to 60 mM NaCl, the lycopene content increased and ascorbic acid content decreased in fruits of 'Gardel'/'Maxifort' grafts, indicating the ability of this scion/rootstock combination to mitigate the toxicity effect of salinity stress. A higher phenolics concentration in fruits from the first growing period may be an additional indicator of stress, caused by higher temperatures and solar radiation, compared with the later period.
Collapse
|
8
|
SOUZA MANUELAODE, PELACANI CLAUDINÉIAR, WILLEMS LEOA, CASTRO RENATODDE, HILHORST HENKW, LIGTERINK WILCO. Effect of osmopriming on germination and initial growth of Physalis angulata L. under salt stress and on expression of associated genes. ACTA ACUST UNITED AC 2016; 88 Suppl 1:503-16. [DOI: 10.1590/0001-3765201620150043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022]
Abstract
ABSTRACT This study aimed to evaluate the effects of priming on seed germination under salt stress and gene expression in seeds and seedlings of P. angulata L. After priming for 10 days, seed germination was tested in plastic trays containing 15 ml of water (0 dS m-1 - control) or 15 ml of NaCl solution (2, 4, 6, 8, 10, 12, 14 and 16 dS m-1). Fresh and dry weight of shoots and roots of seedlings were evaluated at 0, 2, 4, 6, 8 dS m-1. Total RNA was extracted from whole seeds and seedlings followed by RT-qPCR. The target genes selected for this study were: ascorbate peroxidase (APX), glutathione-S-transferase (GST), thioredoxin (TXN), high affinity potassium transporter protein 1 (HAK1) and salt overly sensitive 1 (SOS1). At an electroconductivity of 14 dS m-1 the primed seeds still germinated to 72%, in contrast with the non-primed seeds which did not germinate. The relative expression of APX was higher in primed seeds and this may have contributed to the maintenance of high germination in primed seeds at high salt concentrations. GST and TXN displayed increased transcript levels in shoots and roots of seedlings from primed seeds. Priming improved seed germination as well as salt tolerance and this is correlated with increased expression of APX in seeds and SOS1, GST and TXN in seedlings.
Collapse
|
9
|
Palaniyandi SA, Damodharan K, Yang SH, Suh JW. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of 'Micro Tom' tomato plants. J Appl Microbiol 2014; 117:766-73. [PMID: 24909841 DOI: 10.1111/jam.12563] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Abstract
AIMS To identify an actinobacterial strain that can promote growth and alleviate salinity stress in tomato plants. METHODS AND RESULTS Actinobacteria were isolated from agricultural soil and screened for ACC deaminase activity, production of indole acetic acid (IAA), solubilization of tricalcium phosphate and sodium chloride (NaCl) salinity tolerance. Among the several strains tested, one strain designated PGPA39 exhibited higher IAA production, and phosphate solubilization in addition to ACC deaminase activity, and tolerance to 1 mol l(-1) NaCl. Strain PGPA39 was identified as a Streptomyces strain based on 16S rDNA sequence and designated Streptomyces sp. strain PGPA39. It promoted the growth of Arabidopsis seedlings in vitro as evidenced by a significant increase in plant biomass and number of lateral roots. Salinity stress-alleviating activity of PGPA39 was evaluated using 'Micro Tom' tomato plants with 180 mmol l(-1) NaCl stress under gnotobiotic condition. A significant increase in plant biomass and chlorophyll content and a reduction in leaf proline content were observed in PGPA39-inoculated tomato plants under salt stress compared with control and salt-stressed noninoculated plants. CONCLUSIONS Streptomyces sp. strain PGPA39 alleviated salt stress and promoted the growth of tomato plants. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the potential of Streptomyces sp. strain PGPA39 in alleviating salinity stress in tomato plants and could be utilized for stress alleviation in crop plants under field conditions.
Collapse
Affiliation(s)
- S A Palaniyandi
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Korea
| | | | | | | |
Collapse
|
10
|
Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, Capaldi FR, Carvalho RF, Gratão PL, Rossi ML, Martinelli AP, Peres LE, Azevedo RA. Biochemical and histological characterization of tomato mutants. ACTA ACUST UNITED AC 2012; 84:573-85. [DOI: 10.1590/s0001-37652012005000022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
Abstract
Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.
Collapse
|