1
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
2
|
Paries M, Gutjahr C. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status. THE NEW PHYTOLOGIST 2023. [PMID: 37145847 DOI: 10.1111/nph.18933] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Phosphate (Pi ) is indispensable for life on this planet. However, for sessile land plants it is poorly accessible. Therefore, plants have developed a variety of strategies for enhanced acquisition and recycling of Pi . The mechanisms to cope with Pi limitation as well as direct uptake of Pi from the substrate via the root epidermis are regulated by a conserved Pi starvation response (PSR) system based on a family of key transcription factors (TFs) and their inhibitors. Furthermore, plants obtain Pi indirectly through symbiosis with mycorrhiza fungi, which employ their extensive hyphal network to drastically increase the soil volume that can be explored by plants for Pi . Besides mycorrhizal symbiosis, there is also a variety of other interactions with epiphytic, endophytic, and rhizospheric microbes that can indirectly or directly influence plant Pi uptake. It was recently discovered that the PSR pathway is involved in the regulation of genes that promote formation and maintenance of AM symbiosis. Furthermore, the PSR system influences plant immunity and can also be a target of microbial manipulation. It is known for decades that the nutritional status of plants influences the outcome of plant-microbe interactions. The first molecular explanations for these observations are now emerging.
Collapse
Affiliation(s)
- Michael Paries
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
3
|
Land ES, Cridland CA, Craige B, Dye A, Hildreth SB, Helm RF, Gillaspy GE, Perera IY. A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in Arabidopsis. Metabolites 2021; 11:601. [PMID: 34564416 PMCID: PMC8469675 DOI: 10.3390/metabo11090601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.
Collapse
Affiliation(s)
- Eric S. Land
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.S.L.); (A.D.)
| | - Caitlin A. Cridland
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.A.C.); (B.C.); (S.B.H.); (R.F.H.); (G.E.G.)
| | - Branch Craige
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.A.C.); (B.C.); (S.B.H.); (R.F.H.); (G.E.G.)
| | - Anna Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.S.L.); (A.D.)
| | - Sherry B. Hildreth
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.A.C.); (B.C.); (S.B.H.); (R.F.H.); (G.E.G.)
| | - Rich F. Helm
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.A.C.); (B.C.); (S.B.H.); (R.F.H.); (G.E.G.)
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.A.C.); (B.C.); (S.B.H.); (R.F.H.); (G.E.G.)
| | - Imara Y. Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.S.L.); (A.D.)
| |
Collapse
|
4
|
Osorio MB, Ng S, Berkowitz O, De Clercq I, Mao C, Shou H, Whelan J, Jost R. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. PLANT PHYSIOLOGY 2019; 181:332-352. [PMID: 31262954 PMCID: PMC6716250 DOI: 10.1104/pp.18.00594] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.
Collapse
Affiliation(s)
- Marina Borges Osorio
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
5
|
Araceli O, Alfredo C, Javier M, Luis H. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:558-567. [PMID: 27775858 PMCID: PMC5398999 DOI: 10.1111/pbi.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 05/27/2023]
Abstract
Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses.
Collapse
Affiliation(s)
- Oropeza‐Aburto Araceli
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Cruz‐Ramírez Alfredo
- Molecular and Developmental Complexity LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Mora‐Macías Javier
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| | - Herrera‐Estrella Luis
- Metabolic Engineering LaboratoryUnidad de Genómica Avanzada – LANGEBIO CINVESTAVIrapuatoGuanajuatoMexico
| |
Collapse
|
6
|
Araceli OA, Alfredo CR, Javier MM, Luis HE. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:558-567. [PMID: 27775858 DOI: 10.1111/pbi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses.
Collapse
Affiliation(s)
- Oropeza-Aburto Araceli
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Cruz-Ramírez Alfredo
- Molecular and Developmental Complexity Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Mora-Macías Javier
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Herrera-Estrella Luis
- Metabolic Engineering Laboratory, Unidad de Genómica Avanzada - LANGEBIO CINVESTAV, Irapuato, Guanajuato, Mexico
| |
Collapse
|
7
|
Kuppusamy T, Giavalisco P, Arvidsson S, Sulpice R, Stitt M, Finnegan PM, Scheible WR, Lambers H, Jost R. Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata. PLANT PHYSIOLOGY 2014; 166:1891-911. [PMID: 25315604 PMCID: PMC4256859 DOI: 10.1104/pp.114.248930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/10/2014] [Indexed: 05/20/2023]
Abstract
Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.
Collapse
Affiliation(s)
- Thirumurugen Kuppusamy
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick Giavalisco
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Samuel Arvidsson
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ronan Sulpice
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Mark Stitt
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick M Finnegan
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Wolf-Rüdiger Scheible
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Hans Lambers
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ricarda Jost
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| |
Collapse
|
8
|
Shimojima M, Watanabe T, Madoka Y, Koizumi R, Yamamoto MP, Masuda K, Yamada K, Masuda S, Ohta H. Differential regulation of two types of monogalactosyldiacylglycerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants. FRONTIERS IN PLANT SCIENCE 2013; 4:469. [PMID: 24312111 PMCID: PMC3832787 DOI: 10.3389/fpls.2013.00469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/30/2013] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG) synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2) and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and Arabidopsis.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Takahide Watanabe
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Yuka Madoka
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Ryota Koizumi
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | | | - Kyojiro Masuda
- Department of Biology, Faculty of Science, University of ToyamaToyama, Japan
| | - Kyoji Yamada
- Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- *Correspondence: Hiroyuki Ohta, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4249-B65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan e-mail:
| |
Collapse
|