1
|
Ribeiro C, Xu J, Teper D, Lee D, Wang N. The transcriptome landscapes of citrus leaf in different developmental stages. PLANT MOLECULAR BIOLOGY 2021; 106:349-366. [PMID: 33871796 DOI: 10.1007/s11103-021-01154-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The temporal expression profiles of citrus leaves explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses of mature and immature leaves to biotic stress such as citrus canker and Asian citrus psyllid (Diaphorina citri). Citrus is an important fruit crop worldwide. Different developmental stages of citrus leaves are associated with distinct features, such as differences in susceptibilities to pathogens and insects, as well as photosynthetic capacity. Here, we investigated the mechanisms underlying these distinctions by comparing the gene expression profiles of mature and immature citrus leaves. Immature (stages V3 and V4), transition (stage V5), and mature (stage V6) Citrus sinensis leaves were chosen for RNA-seq analyses. Carbohydrate biosynthesis, photosynthesis, starch biosynthesis, and disaccharide metabolic processes were enriched among the upregulated differentially expressed genes (DEGs) in the V5 and V6 stages compared with that in the V3 and V4 stages. Glucose level was found to be higher in V5 and V6 than in V3 and V4. Among the four stages, the largest number of DEGs between contiguous stages were identified between V5 and V4, consistent with a change from sink to source, as well as with the sucrose and starch quantification data. The differential expression profiles related to cell wall synthesis, secondary metabolites such as flavonoids and terpenoids, amino acid biosynthesis, and immunity between immature and mature leaves may contribute to their different responses to Asian citrus psyllid infestation. The expression data suggested that both the constitutive and induced gene expression of immunity-related genes plays important roles in the greater resistance of mature leaves against Xanthomonas citri compared with immature leaves. The gene expression profiles in the different stages can help identify stage-specific promoters for the manipulation of the expression of citrus traits according to the stage. The temporal expression profiles explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses to biotic stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Doron Teper
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Donghwan Lee
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
2
|
Chen D, Li J, Jiao F, Wang Q, Li J, Pei Y, Zhao M, Song X, Guo X. ZmACY-1 Antagonistically Regulates Growth and Stress Responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:593001. [PMID: 34367193 PMCID: PMC8343404 DOI: 10.3389/fpls.2021.593001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 06/21/2021] [Indexed: 05/17/2023]
Abstract
Aminoacylase-1 is a zinc-binding enzyme that is important in urea cycling, ammonia scavenging, and oxidative stress responses in animals. Aminoacylase-1 (ACY-1) has been reported to play a role in resistance to pathogen infection in the model plant Nicotiana benthamiana. However, little is known about its function in plant growth and abiotic stress responses. In this study, we cloned and analyzed expression patterns of ZmACY-1 in Zea mays under different conditions. We also functionally characterized ZmACY-1 in N. benthamiana. We found that ZmACY-1 is expressed specifically in mature shoots compared with other tissues. ZmACY-1 is repressed by salt, drought, jasmonic acid, and salicylic acid, but is induced by abscisic acid and ethylene, indicating a potential role in stress responses and plant growth. The overexpression of ZmACY-1 in N. benthamiana promoted growth rate by promoting growth-related genes, such as NbEXPA1 and NbEIN2. At the same time, the overexpression of ZmACY-1 in N. benthamiana reduced tolerance to drought and salt stress. With drought and salt stress, the activity of protective enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) from micrococcus lysodeikticus was lower; while the content of malondialdehyde (MDA) and relative electrolytic leakage was higher in ZmACY-1 overexpression lines than that in wild-type lines. The results indicate that ZmACY-1 plays an important role in the balance of plant growth and defense and can be used to assist plant breeding under abiotic stress conditions.
Collapse
Affiliation(s)
- Dongbin Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Junhua Li
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Fuchao Jiao
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jun Li
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuhe Pei
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Meiai Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
| | - Xiyun Song
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xiyun Song,
| | - Xinmei Guo
- Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Xinmei Guo,
| |
Collapse
|
3
|
Blackmore T, Thorogood D, Skøt L, McMahon R, Powell W, Hegarty M. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne. Sci Rep 2016; 6:22603. [PMID: 26935901 PMCID: PMC4776279 DOI: 10.1038/srep22603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass.
Collapse
Affiliation(s)
- T. Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - D. Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - L. Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - R. McMahon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - W. Powell
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| | - M. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, Wales. SY23 3EE
| |
Collapse
|