1
|
Dong D, Shi YN, Mou ZM, Chen SY, Zhao DK. Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. HORTICULTURE RESEARCH 2022; 9:uhac050. [PMID: 35591927 PMCID: PMC9113227 DOI: 10.1093/hr/uhac050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Plant secondary metabolites make a great contribution to the agricultural and pharmaceutical industries. Their accumulation is determined by the integrated transport of target compounds and their biosynthesis-related RNA, protein, or DNA. However, it is hard to track the movement of these biomolecules in vivo. Grafting may be an ideal method to solve this problem. The differences in genetic and metabolic backgrounds between rootstock and scion, coupled with multiple omics approaches and other molecular tools, make it feasible to determine the movement of target compounds, RNAs, proteins, and DNAs. In this review, we will introduce methods of using the grafting technique, together with molecular biological tools, to reveal the differential accumulation mechanism of plant secondary metabolites at different levels. Details of the case of the transport of one diterpene alkaloid, fuziline, will be further illustrated to clarify how the specific accumulation model is shaped with the help of grafting and multiple molecular biological tools.
Collapse
Affiliation(s)
- Ding Dong
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650204, China
| | - Ya-Na Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Zong-Min Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
2
|
Spanò R, Ferrara M, Gallitelli D, Mascia T. The Role of Grafting in the Resistance of Tomato to Viruses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1042. [PMID: 32824316 PMCID: PMC7463508 DOI: 10.3390/plants9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Grafting is routinely implemented in modern agriculture to manage soilborne pathogens such as fungi, oomycetes, bacteria, and viruses of solanaceous crops in a sustainable and environmentally friendly approach. Some rootstock/scion combinations use specific genetic resistance mechanisms to impact also some foliar and airborne pathogens, including arthropod or contact-transmitted viruses. These approaches resulted in poor efficiency in the management of plant viruses with superior virulence such as the strains of tomato spotted wilt virus breaking the Sw5 resistance, strains of cucumber mosaic virus carrying necrogenic satellite RNAs, and necrogenic strains of potato virus Y. Three different studies from our lab documented that suitable levels of resistance/tolerance can be obtained by grafting commercial tomato varieties onto the tomato ecotype Manduria (Ma) rescued in the framework of an Apulian (southern Italy) regional program on biodiversity. Here we review the main approaches, methods, and results of the three case studies and propose some mechanisms leading to the tolerance/resistance observed in susceptible tomato varieties grafted onto Ma as well as in self-grafted plants. The proposed mechanisms include virus movement in plants, RNA interference, genes involved in graft wound response, resilience, and tolerance to virus infection.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA)—CNR, 70126 Bari, Italy;
| | - Donato Gallitelli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| |
Collapse
|
3
|
Kucukoglu M, Chaabouni S, Zheng B, Mähönen AP, Helariutta Y, Nilsson O. Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. THE NEW PHYTOLOGIST 2020; 226:75-85. [PMID: 31749215 PMCID: PMC7065007 DOI: 10.1111/nph.16331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) peptide ligands in connection with their receptors are important players in cell-to-cell communications in plants. Here, we investigated the function of the Populus CLV3/ESR-RELATED 47 (PttCLE47) gene during secondary growth and wood formation in hybrid aspen (Populus tremula × tremuloides) using an RNA interference (RNAi) approach. Expression of PttCLE47 peaks in the vascular cambium. Silencing of the PttCLE47 gene expression affected lateral expansion of stems and decreased apical height growth and leaf size. In particular, PttCLE47 RNAi trees exhibited a narrower secondary xylem zone with less xylem cells/cell file. The reduced radial growth phenotype also correlated with a reduced number of cambial cell layers. In agreement with these results, expression of several cambial regulator genes was downregulated in the stems of the transgenic trees in comparison with controls. Altogether, these results suggest that the PttCLE47 gene is a major positive regulator of cambial activity in hybrid aspen, mainly promoting the production of secondary xylem. Furthermore, in contrast to previously characterized CLE genes expressed in the wood-forming zone, PttCLE47 appears to be active at its site of expression.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Salma Chaabouni
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Ari Pekka Mähönen
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Ykä Helariutta
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
- Sainsbury LaboratoryUniversity of CambridgeCB2 1LRCambridgeUK
| | - Ove Nilsson
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
4
|
Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020; 10:2538. [PMID: 32054920 PMCID: PMC7018947 DOI: 10.1038/s41598-020-59421-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
|
5
|
Spanò R, Ferrara M, Montemurro C, Mulè G, Gallitelli D, Mascia T. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020. [PMID: 32054920 DOI: 10.1038/s41598-020-59421-59425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
Affiliation(s)
- Roberta Spanò
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy.
| | - Massimo Ferrara
- Istituto di Scienze delle Produzioni Alimentari (ISPA) - CNR Via Amendola 122/O, 70126, Bari, Italy
| | - Cinzia Montemurro
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppina Mulè
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari - CNR, Via Amendola 122/O, 70126, Bari, Italia
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| |
Collapse
|
6
|
Grafting on a Non-Transgenic Tolerant Tomato Variety Confers Resistance to the Infection of a Sw5-Breaking Strain of Tomato spotted wilt virus via RNA Silencing. PLoS One 2015. [PMID: 26496695 DOI: 10.1371/journal.pone.0141319.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA silencing controls endogenous gene expression and drives defensive reactions against invasive nucleic acids like viruses. In plants, it has been demonstrated that RNA silencing can be transmitted through grafting between scions and silenced rootstocks to attenuate virus and viroid accumulation in the scions. This has been obtained mostly using transgenic plants, which may be a drawback in current agriculture. In the present study, we examined the dynamics of infection of a resistance-breaking strain of Tomato spotted wilt virus (RB-TSWV) through the graft between an old Apulian (southern Italy) tomato variety, denoted Sl-Ma, used as a rootstock and commercial tomato varieties used as scions. In tests with non-grafted plants, Sl-Ma showed resistance to the RB-TSWV infection as viral RNA accumulated at low levels and plants recovered from disease symptoms by 21 days post inoculation. The resistance trait was transmitted to the otherwise highly susceptible tomato genotypes grafted onto Sl-Ma. The results from the analysis of small RNAs hallmark genes involved in RNA silencing and virus-induced gene silencing suggest that RNA silencing is involved in the resistance showed by Sl-Ma against RB-TSWV and in scions grafted on this rootstock. The results from self-grafted susceptible tomato varieties suggest also that RNA silencing is enhanced by the graft itself. We can foresee interesting practical implications of the approach described in this paper.
Collapse
|
7
|
Spanò R, Mascia T, Kormelink R, Gallitelli D. Grafting on a Non-Transgenic Tolerant Tomato Variety Confers Resistance to the Infection of a Sw5-Breaking Strain of Tomato spotted wilt virus via RNA Silencing. PLoS One 2015; 10:e0141319. [PMID: 26496695 PMCID: PMC4619829 DOI: 10.1371/journal.pone.0141319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 10/07/2015] [Indexed: 02/03/2023] Open
Abstract
RNA silencing controls endogenous gene expression and drives defensive reactions against invasive nucleic acids like viruses. In plants, it has been demonstrated that RNA silencing can be transmitted through grafting between scions and silenced rootstocks to attenuate virus and viroid accumulation in the scions. This has been obtained mostly using transgenic plants, which may be a drawback in current agriculture. In the present study, we examined the dynamics of infection of a resistance-breaking strain of Tomato spotted wilt virus (RB-TSWV) through the graft between an old Apulian (southern Italy) tomato variety, denoted Sl-Ma, used as a rootstock and commercial tomato varieties used as scions. In tests with non-grafted plants, Sl-Ma showed resistance to the RB-TSWV infection as viral RNA accumulated at low levels and plants recovered from disease symptoms by 21 days post inoculation. The resistance trait was transmitted to the otherwise highly susceptible tomato genotypes grafted onto Sl-Ma. The results from the analysis of small RNAs hallmark genes involved in RNA silencing and virus-induced gene silencing suggest that RNA silencing is involved in the resistance showed by Sl-Ma against RB-TSWV and in scions grafted on this rootstock. The results from self-grafted susceptible tomato varieties suggest also that RNA silencing is enhanced by the graft itself. We can foresee interesting practical implications of the approach described in this paper.
Collapse
Affiliation(s)
- Roberta Spanò
- Dipartimento di Scienze del Suolo della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, Bari, Italy
- Istituto di Virologia vegetale del CNR, Unità Operativa di Supporto di Bari, Via Amendola 165/A, Bari, Italy
| | - Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, Bari, Italy
- Istituto di Virologia vegetale del CNR, Unità Operativa di Supporto di Bari, Via Amendola 165/A, Bari, Italy
- * E-mail:
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, Bari, Italy
- Istituto di Virologia vegetale del CNR, Unità Operativa di Supporto di Bari, Via Amendola 165/A, Bari, Italy
| |
Collapse
|