1
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
2
|
Álvarez-Mejía C, Rodríguez-Ríos D, Hernández-Guzmán G, López-Ramírez V, Valenzuela-Soto H, Marsch R. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicola M2. Braz J Microbiol 2015; 46:929-36. [PMID: 26413080 PMCID: PMC4568854 DOI: 10.1590/s1517-838246320140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas syringae pv. maculicola is a natural
pathogen of members of the Brassicaceae plant family. Using a transposon-based
mutagenesis strategy in Pseudomonas syringaepv.
maculicola M2 (PsmM2), we conducted a genetic screen to identify
mutants that were capable of growing in M9 medium supplemented with a crude extract
from the leaves of Arabidopsis thaliana. A mutant containing a
transposon insertion in the hrpZ gene (PsmMut8) was unable to infect
adult plants from Arabidopsis thaliana or Brassica
oleracea, suggesting a loss of pathogenicity. The promotorless
cat reporter present in the gene trap was expressed if PsmMut8
was grown in minimal medium (M9) supplemented with the leaf extract but not if grown
in normal rich medium (KB). We conducted phylogenetic analysis using
hrpAZB genes, showing the classical 5-clade distribution, and
nucleotide diversity analysis, showing the putative position for selective pressure
in this operon. Our results indicate that the hrpAZB operon from
Pseudomonas syringaepv. maculicola M2 is
necessary for its pathogenicity and that its diversity would be under host-mediated
diversifying selection.
Collapse
Affiliation(s)
- César Álvarez-Mejía
- Instituto Tecnológico Superior de Irapuato Plantel Abasolo, Guanajuato, México
| | - Dalia Rodríguez-Ríos
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, México
| | | | | | - Humberto Valenzuela-Soto
- Departamento de Plásticos en Agricultura, Centro de Investigación en Química Aplicada, Coahuila, México
| | - Rodolfo Marsch
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F. México, México
| |
Collapse
|
3
|
Lampl N, Alkan N, Davydov O, Fluhr R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:498-510. [PMID: 23398119 DOI: 10.1111/tpj.12141] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 05/23/2023]
Abstract
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro-survival function by inhibiting its target pro-death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1-RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over-expression exhibited significantly less elicitor-stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro-death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro-death function of compartmentalized protease RD21 by determining a set-point for its activity and limiting the damage induced during cell death.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
4
|
Li YR, Ma WX, Che YZ, Zou LF, Zakria M, Zou HS, Chen GY. A highly-conserved single-stranded DNA-binding protein in Xanthomonas functions as a harpin-like protein to trigger plant immunity. PLoS One 2013; 8:e56240. [PMID: 23418541 PMCID: PMC3571957 DOI: 10.1371/journal.pone.0056240] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
Harpins are produced by gram-negative phytopathogenic bacteria and typically elicit hypersensitive response (HR) in non-host plants. The characterization of harpins in Xanthomonas species is largely unexplored. Here we demonstrate that Xanthomonas produce a highly conserved single-stranded DNA-binding protein (SSB(X)) that elicits HR in tobacco as by harpin Hpa1. SSB(X), like Hpa1, is an acidic, glycine-rich, heat-stable protein that lacks cysteine residues. SSB(X)-triggered HR in tobacco, as by Hpa1, is characterized by the oxidative burst, the expression of HR markers (HIN1, HSR203J), pathogenesis-related genes, and callose deposition. Both SSB(X)- and Hpa1-induced HRs can be inhibited by general metabolism inhibitors actinomycin D, cycloheximide, and lanthanum chloride. Furthermore, those HRs activate the expression of BAK1 and BIK1 genes that are essential for induction of mitogen-activated protein kinase (MAPK) and salicylic acid pathways. Once applied to plants, SSB(X) induces resistance to the fungal pathogen Alternaria alternata and enhances plant growth. When ssb(X)was deleted in X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, the resulting ssb(Xoc)mutant was reduced in virulence and bacterial growth in planta, but retained its ability to trigger HR in tobacco. Interestingly, ssb(Xoc)contains an imperfect PIP-box (plant-inducible promoter) and the expression of ssb(Xoc)is regulated by HrpX, which belongs to the AraC family of transcriptional activators. Immunoblotting evidence showed that SSB(x) secretion requires a functional type-III secretion system as Hpa1 does. This is the first report demonstrating that Xanthomonas produce a highly-conserved SSB(X) that functions as a harpin-like protein for plant immunity.
Collapse
Affiliation(s)
- Yu-Rong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Wen-Xiu Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Yi-Zhou Che
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Li-Fang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Muhammad Zakria
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Hua-Song Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban (South) Ministry of Agriculture of China, Shanghai, China
| |
Collapse
|
5
|
Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One 2011; 6:e17306. [PMID: 21394206 PMCID: PMC3048869 DOI: 10.1371/journal.pone.0017306] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/24/2011] [Indexed: 11/18/2022] Open
Abstract
To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZ(Psph) was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZ(Psph) showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZ(Psph) developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms underlying the enhanced resistance and plant growth phenotypes observed in SP/HrpZ transgenic plants are discussed.
Collapse
Affiliation(s)
- Ourania I. Pavli
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| | - Georgia I. Kelaidi
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| | - Anastasia P. Tampakaki
- Department of Agricultural Biotechnology,
Agricultural University of Athens, Athens, Greece
| | - George N. Skaracis
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| |
Collapse
|
6
|
Kadono T, Tran D, Errakhi R, Hiramatsu T, Meimoun P, Briand J, Iwaya-Inoue M, Kawano T, Bouteau F. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS One 2010; 5:e13373. [PMID: 20967217 PMCID: PMC2954175 DOI: 10.1371/journal.pone.0013373] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/20/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3) treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3)-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3), Ca(2+) influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3); namely, H(2)O(2) generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3)-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Daniel Tran
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Rafik Errakhi
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Takuya Hiramatsu
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - Patrice Meimoun
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Joël Briand
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Tomonori Kawano
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - François Bouteau
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
7
|
Terta M, Kettani-Halabi M, Ibenyassine K, Tran D, Meimoun P, M'hand RA, El-Maarouf-Bouteau H, Val F, Ennaji MM, Bouteau F. Arabidopsis thaliana cells: a model to evaluate the virulence of Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:139-43. [PMID: 20064057 DOI: 10.1094/mpmi-23-2-0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pectobacterium carotovorum are economically important plant pathogens that cause plant soft rot. These enterobacteria display high diversity world-wide. Their pathogenesis depends on production and secretion of virulence factors such as plant cell wall-degrading enzymes, type III effectors, a necrosis-inducing protein, and a secreted virulence factor from Xanthomonas spp., which are tightly regulated by quorum sensing. Pectobacterium carotovorum also present pathogen-associated molecular patterns that could participate in their pathogenicity. In this study, by using suspension cells of Arabidopsis thaliana, we correlate plant cell death and pectate lyase activities during coinfection with different P. carotovorum strains. When comparing soft rot symptoms induced on potato slices with pectate lyase activities and plant cell death observed during coculture with Arabidopsis thaliana cells, the order of strain virulence was found to be the same. Therefore, Arabidopsis thaliana cells could be an alternative tool to evaluate rapidly and efficiently the virulence of different P. carotovorum strains.
Collapse
Affiliation(s)
- Meriam Terta
- LEM-EA3514-Universite Paris Diderot-Paris 7, 2 place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|