1
|
Singh D, Mitra O, Mahapatra K, Raghuvanshi AS, Kulkarni R, Datta S. REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins target ABSCISIC ACID INSENSITIVE 5 for degradation to promote early plant development. PLANT PHYSIOLOGY 2024; 196:2490-2503. [PMID: 39196775 DOI: 10.1093/plphys/kiae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) are WD-40 domain-containing proteins that have been extensively characterized for their role in UV-B signaling. However, the roles of the RUP proteins outside the canonical UV-signaling pathway are less known. Here, we identify that RUP1 and RUP2 play important roles in ABA signaling to regulate seed germination and early seedling development in Arabidopsis thaliana. Our protein interaction studies confirmed that RUP1 and RUP2 physically interact with ABA INSENSITIVE 5 (ABI5). In the presence of abscisic acid, rup1, rup2, and rup1rup2 exhibited reduced germination and seedling establishment compared with the wild type. Germination and seedling establishment in rup1rup2abi5-8 were similar to abi5-8, suggesting that RUP1 and RUP2 suppress ABA-mediated inhibition of germination and early seedling development in an ABI5-dependent manner. The DDB1-binding WD40 protein RUP2 promoted the ubiquitination of ABI5 to regulate its degradation. ABI5, in turn, establishes a negative feedback loop to inhibit the expression of RUP1/RUP2. ABI5 also inhibited the direct binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of RUP1 and RUP2 under ABA. This study highlights the coordinated action of RUP1, RUP2, ABI5, and HY5 in regulating early plant development.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Oihik Mitra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Akshat Singh Raghuvanshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Rucha Kulkarni
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
2
|
Ghimire S, Hasan MM, Fang XW. Small ubiquitin-like modifiers E3 ligases in plant stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24032. [PMID: 38669463 DOI: 10.1071/fp24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Singh D, Datta S. BBX30/miP1b and BBX31/miP1a form a positive feedback loop with ABI5 to regulate ABA-mediated postgermination seedling growth arrest. THE NEW PHYTOLOGIST 2023; 238:1908-1923. [PMID: 36882897 DOI: 10.1111/nph.18866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
In plants, the switch to autotrophic growth involves germination followed by postgermination seedling establishment. When environmental conditions are not favorable, the stress hormone abscisic acid (ABA) signals plants to postpone seedling establishment by inducing the expression of the transcription factor ABI5. The levels of ABI5 determine the efficiency of the ABA-mediated postgermination developmental growth arrest. The molecular mechanisms regulating the stability and activity of ABI5 during the transition to light are less known. Using genetic, molecular, and biochemical approach, we found that two B-box domain containing proteins BBX31 and BBX30 alongwith ABI5 inhibit postgermination seedling establishment in a partially interdependent manner. BBX31 and BBX30 are also characterized as microProteins miP1a and miP1b, respectively, based on their small size, single domain, and ability to interact with multidomain proteins. miP1a/BBX31 and miP1b/BBX30 physically interact with ABI5 to stabilize it and promote its binding to promoters of downstream genes. ABI5 reciprocally induces the expression of BBX30 and BBX31 by directly binding to their promoter. ABI5 and the two microProteins thereby form a positive feedback loop to promote ABA-mediated developmental arrest of seedlings.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction. Ann N Y Acad Sci 2021; 1509:89-112. [PMID: 34766352 DOI: 10.1111/nyas.14708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Summer maize is frequently subjected to waterlogging damage because of increased and variable rainfall during the growing season. The application of 6-benzyladenine (6-BA) can effectively mitigate the waterlogging effects on plant growth and increase the grain yield of waterlogged summer maize. However, the mechanisms underlying this process and the involvement of 6-BA in relevant signal transduction pathways remain unclear. In this study, we explored the effects of 6-BA on waterlogged summer maize using a phosphoproteomic technique to better understand the mechanism by which summer maize growth improves following waterlogging. Application of 6-BA inhibited the waterlogging-induced increase in abscisic acid (ABA) content and increased the phosphorylation levels of proteins involved in ABA signaling; accordingly, stomatal responsiveness to exogenous ABA increased. In addition, the application of 6-BA had a long-term effect on signal transduction pathways and contributed to rapid responses to subsequent stresses. Plants primed with 6-BA accumulated more ethylene and jasmonic acid in response to subsequent waterlogging; accordingly, leaf SPAD, antioxidase activity, and root traits improved by 6-BA priming. These results suggest that the effects of 6-BA on hormone signal transduction pathways are anamnestic, which enables plants to show faster or stronger defense responses to stress.
Collapse
Affiliation(s)
- Juan Hu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baizhao Ren
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
5
|
Srivastava M, Verma V, Srivastava AK. The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. PLANT CELL REPORTS 2021; 40:2047-2061. [PMID: 34129078 DOI: 10.1007/s00299-021-02732-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The intersection of phytohormone signalling pathways with SUMOylation, a key post-translational modification, offers an additional layer of control to the phytohormone signalling for sophisticated regulation of plant development. Plants live in a constantly changing environment that are often challenging for the growth and development of plants. Phytohormones play a critical role in modulating molecular-level changes for enabling plants to resist climatic aberrations. The orchestration of such effective molecular responses entails rapid regulation of phytohormone signalling at transcriptional, translational and post-translational levels. Post-translational modifications have emerged as a key player in modulating hormonal pathways. The current review lays emphasis on the role of SUMOylation, a key post-translational modification, in manipulating individual hormone signalling pathways for better plant adaptability. Here, we discuss the recent advancement in the field and highlights how SUMO targets key signalling intermediates including transcription factors to provide a quick response to different biotic or abiotic stresses, sometimes even prior to changes in hormone levels. The understanding of the convergence of SUMOylation and hormonal pathways will offer an additional layer of control to the phytohormone signalling for an intricate and sophisticated regulation of plant development and can be utilised as a tool to generate climate-resilient crops.
Collapse
Affiliation(s)
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| | - Anjil Kumar Srivastava
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2421-2431. [PMID: 34744375 PMCID: PMC8526628 DOI: 10.1007/s12298-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
7
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
8
|
Zhang CL, Wang GL, Zhang YL, Hu X, Zhou LJ, You CX, Li YY, Hao YJ. Apple SUMO E3 ligase MdSIZ1 facilitates SUMOylation of MdARF8 to regulate lateral root formation. THE NEW PHYTOLOGIST 2021; 229:2206-2222. [PMID: 33006771 DOI: 10.1111/nph.16978] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/19/2020] [Indexed: 05/20/2023]
Abstract
Post-translational modification of proteins mediated by SIZ1, a small ubiquitin-like modifier (SUMO) E3 ligase, regulates multiple biological processes in plants. However, its role in the regulation of lateral root formation remains unclear. Here, we demonstrate that the apple SUMO E3 ligase MdSIZ1 promotes lateral root formation. Using a yeast-two-hybrid (Y2H) system, the auxin response factor MdARF8 was screened out as a protein-protein interaction partner of the SUMO-conjugating E2 enzyme MdSCE1, indicating that MdARF8 may be a substrate for MdSIZ1. The interaction between MdARF8 and MdSCE1 was confirmed by pull-down, Y2H and Co-immunoprecipitation assays. MdSIZ1 enhanced the conjugating enzyme activity of MdSCE1 to form a MdSCE1-MdSIZ1-MdARF8 complex, thereby facilitating SUMO modification. We identified two arginine substitution mutations at K342 and K380 in MdARF8 that blocked MdSIZ1-mediated SUMOylation, indicating that K342 and K380 are the principal SUMOylation sites of the MdARF8 protein. Moreover, MdARF8 promoted lateral root formation in transgenic apple plants, and the phenotype of reduced lateral roots in the Arabidopsis siz1-2 mutant was restored in siz1-2/MdARF8 complementary plants. Our findings reveal an important role for sumoylation in the regulation of lateral root formation in plants.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xing Hu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
9
|
Miura K, Renhu N, Suzaki T. The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Commun Biol 2020; 3:23. [PMID: 31925312 PMCID: PMC6954211 DOI: 10.1038/s42003-019-0746-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis SIZ1 encodes a SUMO E3 ligase to regulate abiotic and biotic stress responses. Among SIZ1 or mammalian PIAS orthologs, plant SIZ1 proteins contain the plant homeodomain (PHD) finger, a C4HC3 zinc finger. Here, we investigated the importance of PHD of Arabidopsis SIZ1. The ProSIZ1::SIZ1(ΔPHD):GFP was unable to complement growth retardation, ABA hypersensitivity, and the cold-sensitive phenotype of the siz1 mutant, but ProSIZ1::SIZ1:GFP could. Substitution of C162S in the PHD finger was unable to complement the siz1 mutation. Tri-methylated histone H3K4 (H3K4me3) was recognized by PHD, not by PHD(C162S). WRKY70 was up-regulated in the siz1-2 mutant and H3K4me3 accumulated at high levels in the WRKY70 promoter. PHD interacts with ATX, which mediates methylation of histone, probably leading to suppression of ATX’s function. These results suggest that the PHD finger of SIZ1 is important for recognition of the histone code and is required for SIZ1 function and transcriptional suppression. Kenji Miura et al. investigate the role of the plant homeodomain (PHD) finger of the Arabidopsis SIZ1 protein. They show that the PHD finger is involved in hormone response and temperature sensitivity, and plays an important role in H3K4 methylation, thereby affecting recognition of histone code and transcriptional suppression.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Na Renhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
10
|
le Roux ML, Kunert KJ, van der Vyver C, Cullis CA, Botha AM. Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:266. [PMID: 30906307 PMCID: PMC6418343 DOI: 10.3389/fpls.2019.00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 05/05/2023]
Abstract
Post-translation modification of proteins plays a critical role in cellular signaling processes. In recent years, the SUMO (Small Ubiquitin-Like Modifier) class of molecules has emerged as an influential mechanism for target protein management. SUMO proteases play a vital role in regulating pathway flux and are therefore ideal targets for manipulating stress-responses. In the present study, the expression of an Arabidopsis thaliana cysteine protease (OVERLY TOLERANT TO SALT-1, OTS1) in wheat (Triticum aestivum L.) has led to improved plant growth under water stress conditions. Transformed wheat (pUBI-OTS1) displayed enhanced growth and delayed senescence under water deficit when compared with untransformed Gamtoos-R genotype or plants carrying an empty vector. Transformed pUBI-OTS1 plants also maintained a high relative moisture content (RMC), had a higher photosynthesis rate, and also had a higher total chlorophyll content when compared to untransformed plants or plants carrying an empty vector. SUMOylation of total protein also increased in untransformed plants but not in the AtOTS1 transformed plants. Our results suggest that SUMO-proteases may influence an array of mechanisms in wheat to the advantage of the crop to be more tolerant to water stress caused by drought. This is the first report to elucidate SUMOylation effects in the hexaploid crop wheat (T. aestivum L.).
Collapse
Affiliation(s)
- Marlon L. le Roux
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Anna-Maria Botha,
| |
Collapse
|
11
|
Yu F, Wu Y, Xie Q. Precise protein post-translational modifications modulate ABI5 activity. TRENDS IN PLANT SCIENCE 2015; 20:569-75. [PMID: 26044742 DOI: 10.1016/j.tplants.2015.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 05/22/2023]
Abstract
Abscisic acid-insensitive 5 (ABI5), a plant basic leucine zipper (bZIP) transcription factor, has been revealed to be the key regulator in the abscisic acid (ABA) signaling pathway controlling seed dormancy, germination, plant growth, and flowering time. Recently, new evidence has come to light that a combination of different post-translational modifications (PTMs) might together control the stability and activity of ABI5. In this review, we highlight three types of PTM (protein phosphorylation/dephosphorylation, ubiquitination, and sumoylation) and their interactions that precisely regulate ABI5 signaling. ABI5 is the best-studied key molecule in the ABA signaling pathway with respect to PTMs; therefore, this review could serve as a model to guide post-translational studies of important regulators in other plant hormone signaling pathways.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Lindemose S, O’Shea C, Jensen MK, Skriver K. Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 2013; 14:5842-78. [PMID: 23485989 PMCID: PMC3634440 DOI: 10.3390/ijms14035842] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 12/03/2022] Open
Abstract
Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic disorder (ID), referring to their lack of fixed tertiary structures. ID is now an emerging topic in plant science. Furthermore, the importance of the ubiquitin-proteasome protein degradation systems and modification by sumoylation is also apparent from the interactomes. Therefore; TF interaction partners such as E3 ubiquitin ligases and TF regions with ID represent future targets for engineering improved abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Søren Lindemose
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
| | - Charlotte O’Shea
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
| | - Michael Krogh Jensen
- Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mail:
| | - Karen Skriver
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-35321712
| |
Collapse
|
13
|
Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci 2013; 14:5312-37. [PMID: 23466881 PMCID: PMC3634503 DOI: 10.3390/ijms14035312] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tsuyoshi Furumoto
- Department of Agriculture, Ryukoku University, Kyoto 610-8577, Japan; E-Mail:
| |
Collapse
|
14
|
New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:161-209. [PMID: 23273862 DOI: 10.1016/b978-0-12-405210-9.00005-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a small (∼12kDa) protein that occurs in all eukaryotes and participates in the reversible posttranslational modification of target cellular proteins. The three-dimensional structure of SUMO and ubiquitin (Ub) are superimposable although there is very little similarity in their primary amino acid sequences. In all organisms, conjugation and deconjugation of Ub and SUMO proceed by the same reactions while using pathway-specific enzymes. SUMO conjugation in plants is a part of the controls governing important biological processes such as growth, development, flowering, environmental (abiotic) stress responses, and response to pathogen infection. Most of the evidence for this comes from genetic analyses. Recent efforts to dissect the function of sumoylation have focused on uncovering targets of SUMO conjugation by using either a yeast two-hybrid screen employing components of the SUMO cycle as bait or by using affinity purification of SUMO-conjugated proteins followed by identification of these proteins by mass spectrometry. This chapter reviews the current knowledge regarding sumoylation in plants, with special focus on the model plant Arabidopsis thaliana.
Collapse
|
15
|
Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:91-104. [PMID: 22963672 DOI: 10.1111/tpj.12014] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 05/20/2023]
Abstract
Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Hiroyuki Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Eiji Okuma
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hayato Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Hiroshi Kamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Paul M Hasegawa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
16
|
Sato A, Miura K. Root architecture remodeling induced by phosphate starvation. PLANT SIGNALING & BEHAVIOR 2011; 6:1122-6. [PMID: 21778826 PMCID: PMC3260708 DOI: 10.4161/psb.6.8.15752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/17/2023]
Abstract
Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow, and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption, and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.
Collapse
Affiliation(s)
- Aiko Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
17
|
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. PLANT PHYSIOLOGY 2011; 155:1000-12. [PMID: 21156857 PMCID: PMC3032448 DOI: 10.1104/pp.110.165191] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/26/2010] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miura K, Ohta M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:555-60. [PMID: 19959255 DOI: 10.1016/j.jplph.2009.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/07/2009] [Accepted: 11/07/2009] [Indexed: 05/05/2023]
Abstract
Low temperature induces several genes to acquire plant cold tolerance. Here, we demonstrate that accumulation of salicylic acid (SA) is involved in the regulation of the DREB1A/CBF3 regulon and plant tolerance to cold stresses. The SA-accumulating mutant siz1 exhibits sensitivity to chilling and freezing conditions and decreased expression of DREB1A/CBF3 and its regulon genes. Reduction of SA levels in siz1 by nahG restored cold sensitivity and down-regulation of these genes. Database analyses and RT-PCR analysis revealed that the ice1 mutation also increased expression of SA-responsive genes. As well as siz1, another SA-accumulating mutant acd6 exhibited freezing sensitivity and the sensitivity was suppressed in acd6 nahG plants. Taken together, these data indicate that SA is involved in regulation of cold signaling.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, Initiative for the Promotion of Young Scientists' independent Research, University of Tsukuba, Gene Research Center 220, 1-1-1 Ten-nou dai, Tsukuba 305-8572, Japan.
| | | |
Collapse
|