1
|
Liu F, Ma D, Yu J, Meng R, Wang Z, Zhang B, Chen X, Zhang L, Peng L, Xia J. Overexpression of an ART1-Interacting Gene OsNAC016 Improves Al Tolerance in Rice. Int J Mol Sci 2023; 24:17036. [PMID: 38069359 PMCID: PMC10706868 DOI: 10.3390/ijms242317036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (F.L.); (D.M.); (J.Y.); (R.M.); (Z.W.); (B.Z.); (X.C.); (L.Z.); (L.P.)
| |
Collapse
|
2
|
Li F, Wang K, Zhang X, Han P, Liu Y, Zhang J, Peng T, Li J, Zhao Y, Sun H, Du Y. BPB1 regulates rice ( Oryza sative L.) panicle length and panicle branch development by promoting lignin and inhibiting cellulose accumulation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:41. [PMID: 37312745 PMCID: PMC10248638 DOI: 10.1007/s11032-023-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
Panicle structure is one of the most important agronomic traits directly related to rice yield. This study identified a rice mutant basal primary branch 1 (bpb1), which exhibited a phenotype of reduced panicle length and arrested basal primary branch development. In addition, lignin content was found to be increased while cellulose content was decreased in bpb1 young panicles. Map-based cloning methods characterized the gene BPB1, which encodes a peptide transporter (PTR) family transporter. Phylogenetic tree analysis showed that the BPB1 family is highly conserved in plants, especially the PTR2 domain. It is worth noting that BPB1 is divided into two categories based on monocotyledonous and dicotyledonous plants. Transcriptome analysis showed that BPB1 mutation can promote lignin synthesis and inhibit cellulose synthesis, starch and sucrose metabolism, cell cycle, expression of various plant hormones, and some star genes, thereby inhibiting rice panicle length, resulting in basal primary branch development stagnant phenotypes. In this study, BPB1 provides new insights into the molecular mechanism of rice panicle structure regulation by BPB1 by regulating lignin and cellulose content and several transcriptional metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01389-x.
Collapse
Affiliation(s)
- Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ke Wang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Peijie Han
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ye Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| |
Collapse
|
3
|
Li P, Liu Y, Tan W, Chen J, Zhu M, Lv Y, Liu Y, Yu S, Zhang W, Cai H. Brittle Culm 1 Encodes a COBRA-Like Protein Involved in Secondary Cell Wall Cellulose Biosynthesis in Sorghum. PLANT & CELL PHYSIOLOGY 2019; 60:788-801. [PMID: 30590744 DOI: 10.1093/pcp/pcy246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/20/2018] [Indexed: 05/08/2023]
Abstract
Plant mechanical strength contributes to lodging resistance and grain yield, making it an agronomically important trait in sorghum (Sorghum bicolor). In this study, we isolated the brittle culm 1 (bc1) mutant and identified SbBC1 through map-based cloning. SbBC1, a homolog of rice OsBC1 and Arabidopsis thaliana AtCOBL4, encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchored protein. A single-nucleotide mutation in SbBC1 led to reduced mechanical strength, decreased cellulose content, and increased lignin content without obviously altering plant morphology. Transmission electron microscopy revealed reduced cell wall thickness in sclerenchyma cells of the bc1 mutant. SbBC1 is primarily expressed in developing sclerenchyma cells and vascular bundles in sorghum. RNA-seq analysis further suggested a possible mechanism by which SbBC1 mediates cellulose biosynthesis and cell wall remodeling. Our results demonstrate that SbBC1 participates in the biosynthesis of cellulose in the secondary cell wall and affects the mechanical strength of sorghum plants, providing additional genetic evidence for the roles of COBRA-like genes in cellulose biosynthesis in grasses.
Collapse
Affiliation(s)
- Pan Li
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops North China, Ministry of Agriculture, Beijing, China
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Wenqing Tan
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Jun Chen
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Mengjiao Zhu
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Ya Lv
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Yishan Liu
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops North China, Ministry of Agriculture, Beijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, China
| | - Hongwei Cai
- Department of Plant Genetics Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement; Laboratory of Crop Heterosis and Utilization, MOE, Beijing, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, Japan
| |
Collapse
|
4
|
Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H, Lloyd CW, Pesquet E. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis. THE PLANT CELL 2015; 27:2709-26. [PMID: 26432860 PMCID: PMC4682315 DOI: 10.1105/tpc.15.00314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/15/2015] [Indexed: 05/07/2023]
Abstract
Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.
Collapse
Affiliation(s)
- Paul Derbyshire
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Delphine Ménard
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Porntip Green
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Henrik Buschmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clive W Lloyd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|