1
|
Wang Y, Tsukamoto T, Noble JA, Liu X, Mosher RA, Palanivelu R. Arabidopsis LORELEI, a Maternally Expressed Imprinted Gene, Promotes Early Seed Development. PLANT PHYSIOLOGY 2017; 175:758-773. [PMID: 28811333 PMCID: PMC5619890 DOI: 10.1104/pp.17.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/13/2017] [Indexed: 05/29/2023]
Abstract
In flowering plants, the female gametophyte controls pollen tube reception immediately before fertilization and regulates seed development immediately after fertilization, although the controlling mechanisms remain poorly understood. Previously, we showed that LORELEI (LRE), which encodes a putative glycosylphosphatidylinositol-anchored membrane protein, is critical for pollen tube reception by the female gametophyte before fertilization and the initiation of seed development after fertilization. Here, we show that LRE is expressed in the synergid, egg, and central cells of the female gametophyte and in the zygote and proliferating endosperm of the Arabidopsis (Arabidopsis thaliana) seed. Interestingly, LRE expression in the developing seeds was primarily from the matrigenic LRE allele, indicating that LRE expression is imprinted. However, LRE was biallelically expressed in 8-d-old seedlings, indicating that the patrigenic allele does not remain silenced throughout the sporophytic generation. Regulation of imprinted LRE expression is likely novel, as LRE was not expressed in pollen or pollen tubes of mutants defective for MET1, DDM1, RNA-dependent DNA methylation, or MSI-dependent histone methylation. Additionally, the patrigenic LRE allele inherited from these mutants was not expressed in seeds. Surprisingly, and contrary to the predictions of the parental conflict hypothesis, LRE promotes growth in seeds, as loss of the matrigenic but not the patrigenic LRE allele caused delayed initiation of seed development. Our results showed that LRE is a rare imprinted gene that functions immediately after double fertilization and supported the model that a passage through the female gametophyte establishes monoalleleic expression of LRE in seeds and controls early seed development.
Collapse
Affiliation(s)
- Yanbing Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Tatsuya Tsukamoto
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Jennifer A Noble
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xunliang Liu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
2
|
Kasahara RD, Notaguchi M, Nagahara S, Suzuki T, Susaki D, Honma Y, Maruyama D, Higashiyama T. Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. SCIENCE ADVANCES 2016; 2:e1600554. [PMID: 27819041 PMCID: PMC5091356 DOI: 10.1126/sciadv.1600554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
In angiosperms, pollen tubes carry two sperm cells toward the egg and central cells to complete double fertilization. In animals, not only sperm but also seminal plasma is required for proper fertilization. However, little is known regarding the function of pollen tube content (PTC), which is analogous to seminal plasma. We report that the PTC plays a vital role in the prefertilization state and causes an enlargement of ovules without fertilization. We termed this phenomenon as pollen tube-dependent ovule enlargement morphology and placed it between pollen tube guidance and double fertilization. Additionally, PTC increases endosperm nuclei without fertilization when combined with autonomous endosperm mutants. This finding could be applied in agriculture, particularly in enhancing seed formation without fertilization in important crops.
Collapse
Affiliation(s)
- Ryushiro D. Kasahara
- Precursory Research for Embryonic Science and Technology (PRESTO) Kasahara Sakigake Project, Japan Science and Technology Agency (JST), Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Corresponding author.
| | - Michitaka Notaguchi
- Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, JST, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- PRESTO, JST, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
| | - Takamasa Suzuki
- Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, JST, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Daichi Susaki
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka Ward, Yokohama 244-0813, Japan
| | - Yujiro Honma
- Precursory Research for Embryonic Science and Technology (PRESTO) Kasahara Sakigake Project, Japan Science and Technology Agency (JST), Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
| | - Daisuke Maruyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka Ward, Yokohama 244-0813, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, JST, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
- Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-0814, Japan
| |
Collapse
|
3
|
Abstract
The angiosperm female gametophyte is critical for plant reproduction. It contains the egg cell and central cell that become fertilized and give rise to the embryo and endosperm of the seed, respectively. Female gametophyte development begins early in ovule development with the formation of a diploid megaspore mother cell that undergoes meiosis. One resulting haploid megaspore then develops into the female gametophyte. Genetic and epigenetic processes mediate specification of megaspore mother cell identity and limit megaspore mother cell formation to a single cell per ovule. Auxin gradients influence female gametophyte polarity and a battery of transcription factors mediate female gametophyte cell specification and differentiation. The mature female gametophyte secretes peptides that guide the pollen tube to the embryo sac and contains protein complexes that prevent seed development before fertilization. Post-fertilization, the female gametophyte influences seed development through maternal-effect genes and by regulating parental contributions. Female gametophytes can form by an asexual process called gametophytic apomixis, which involves formation of a diploid female gametophyte and fertilization-independent development of the egg into the embryo. These functions collectively underscore the important role of the female gametophyte in seed and food production.
Collapse
Affiliation(s)
- Gary N. Drews
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Address correspondence to
| | - Anna M.G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Waite Campus, South Australia 5064, Australia
| |
Collapse
|