1
|
Dhyani A, Kasana S, Uniyal PL. From barcodes to genomes: a new era of molecular exploration in bryophyte research. FRONTIERS IN PLANT SCIENCE 2025; 15:1500607. [PMID: 39872206 PMCID: PMC11770019 DOI: 10.3389/fpls.2024.1500607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Bryophytes represent a diverse and species-rich group of plants, characterized by a remarkable array of morphological variations. Due to their significant ecological and economic roles worldwide, accurate identification of bryophyte taxa is crucial. However, the variability in morphological traits often complicates their proper identification and subsequent commercial utilization. DNA barcoding has emerged as a valuable tool for the precise identification of bryophyte taxa, facilitating comparisons at both interspecific and intraspecific levels. Recent research involving plastomes, mitogenomes, and transcriptomes of various bryophyte species has provided insights into molecular changes and gene expression in response to environmental stressors. Advances in molecular phylogenetics have shed light on the origin and evolutionary history of bryophytes, thereby clarifying their phylogenetic relationships. Despite these advancements, a comprehensive understanding of the systematic relationships within bryophytes is still lacking. This review synthesizes current molecular studies that have been instrumental in unraveling the complexity of bryophyte taxonomy and systematics. By highlighting key findings from recent genetic and genomic research, we underscore the importance of integrating molecular data with traditional morphological approaches. Such integration is essential for refining the classification systems of bryophytes and for understanding their adaptive strategies in various ecological niches. Future research should focus on expanding the molecular datasets across underrepresented bryophyte lineages and exploring the functional significance of genetic variations under different environmental conditions. This will not only enhance our knowledge of bryophyte evolution, but also inform conservation strategies and potential applications in biotechnology.
Collapse
Affiliation(s)
| | - Shruti Kasana
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
2
|
Cahoon AB, Nauss JA, Stanley CD, Qureshi A. Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii, Provides No Evidence of Organellar RNA Editing. Genes (Basel) 2017; 8:genes8020080. [PMID: 28230734 PMCID: PMC5333069 DOI: 10.3390/genes8020080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated in embryophytes either after the invasion of land or in the now extinct algal ancestor of all land plants. This was challenged when a recent in silico screen for RNA edit sites based on genomic sequence homology predicted edit sites in the green alga Chara vulgaris, a multicellular alga found within the Streptophyta clade and one of the closest extant algal relatives of land plants. In this study, the organelle transcriptomes of C. vulgaris and Chlamydomonas reinhardtii were deep sequenced for a comprehensive assessment of RNA editing. Initial analyses based solely on sequence comparisons suggested potential edit sites in both species, but subsequent high-resolution melt analysis, RNase H-dependent PCR (rhPCR), and Sanger sequencing of DNA and complementary DNAs (cDNAs) from each of the putative edit sites revealed them to be either single-nucleotide polymorphisms (SNPs) or spurious deep sequencing results. The lack of RNA editing in these two lineages is consistent with the current hypothesis that RNA editing evolved after embryophytes split from its ancestral algal lineage.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - John A Nauss
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - Conner D Stanley
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| | - Ali Qureshi
- Department of Natural Sciences, University of Virginia's College at Wise, 1 College Ave., Wise, VA 24293, USA.
| |
Collapse
|
3
|
Surrogate mutants for studying mitochondrially encoded functions. Biochimie 2013; 100:234-42. [PMID: 23994752 DOI: 10.1016/j.biochi.2013.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022]
Abstract
Although chloroplast transformation is possible in some plant species, it is extremely difficult to create or select mutations in plant mitochondrial genomes, explaining why few genetic studies of mitochondrially encoded functions exist. In recent years it has become clear that many nuclear genes encode factors with key functions in organelle gene expression, and that often their action is restricted to a single organelle gene or transcript. Mutations in one of these nuclear genes thus leads to a specific primary defect in expression of a single organelle gene, and the nuclear mutation can be used as a surrogate for a phenotypically equivalent mutation in the organelle genome. These surrogate mutations often result in defective assembly of respiratory complexes, and lead to severe phenotypes including reduced growth and fertility, or even embryo-lethality. A wide collection of such mutants is now available, and this review summarises the progress in basic knowledge of mitochondrial biogenesis they have contributed to and points out areas where this resource has not been exploited yet.
Collapse
|
4
|
Sugita M, Ichinose M, Ide M, Sugita C. Architecture of the PPR gene family in the moss Physcomitrella patens. RNA Biol 2013; 10:1439-45. [PMID: 23645116 PMCID: PMC3858427 DOI: 10.4161/rna.24772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins.
Collapse
Affiliation(s)
- Mamoru Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuki Ide
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| |
Collapse
|
5
|
Rüdinger M, Szövényi P, Rensing SA, Knoop V. Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:370-380. [PMID: 21466601 DOI: 10.1111/j.1365-313x.2011.04600.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plant-specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS-type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C-to-U type of RNA editing events in plant organelles. Here, we report a DYW-protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the 'missing' 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.
Collapse
Affiliation(s)
- Mareike Rüdinger
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, Bonn, Germany
| | | | | | | |
Collapse
|
6
|
Abstract
The pentatricopeptide repeat (PPR) is a degenerate 35-amino-acid structural motif identified from analysis of the sequenced genome of the model plant Arabidopsis thaliana. From the wealth of sequence information now available from plant genomes, the PPR protein family is now known to be one of the largest families in angiosperm species, as most genomes encode 400-600 members. As the number of PPR genes is generally only c. 10-20 in other eukaryotic organisms, including green algae, the family has obviously greatly expanded during land plant evolution. This provides a rare opportunity to study selection pressures driving a 50-fold expansion of a single gene family. PPR proteins are sequence-specific RNA-binding proteins involved in many aspects of RNA processing in organelles. In this review, we will summarize our current knowledge about the evolution of PPR genes, and will discuss the relevance of the dramatic expansion in the family to the functional diversification of plant organelles, focusing primarily on RNA editing.
Collapse
Affiliation(s)
- Sota Fujii
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| |
Collapse
|
7
|
Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 2011; 3:344-58. [PMID: 21436122 PMCID: PMC5654404 DOI: 10.1093/gbe/evr027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Using an independent fosmid cloning approach and comprehensive transcriptome analysis to complement data from the Selaginella moellendorffii genome project, we determined the complete mitochondrial genome structure of this spikemoss. Numerous recombination events mediated mainly via long sequence repeats extending up to 7kbp result in a complex mtDNA network structure. Peculiar features associated with the repeat sequences are more than 80 different microsatellite sites (predominantly trinucleotide motifs). The S. moellendorffii mtDNA encodes a plant-typical core set of a twin-arginine translocase (tatC), 17 respiratory chain subunits, and 2 rRNAs but lacks atp4 and any tRNA genes. As a further novelty among plant chondromes, the nad4L gene is encoded within an intron of the nad1 gene. A total of 37 introns occupying the 20 mitochondrial genes (four of which are disrupted into trans-splicing arrangements including two novel instances of trans-splicing introns) make the S. moellendorffii chondrome the intron-richest and gene-poorest plant mtDNA known. Our parallel transcriptome analyses demonstrates functional splicing of all 37 introns and reveals a new record amount of plant organelle RNA editing with a total of 2,139 sites in mRNAs and 13 sites in the two rRNAs, all of which are exclusively of the C-to-U type.
Collapse
Affiliation(s)
- Julia Hecht
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Felix Grewe
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
- Corresponding author: E-mail:
| |
Collapse
|
8
|
Ohtani S, Ichinose M, Tasaki E, Aoki Y, Komura Y, Sugita M. Targeted gene disruption identifies three PPR-DYW proteins involved in RNA editing for five editing sites of the moss mitochondrial transcripts. PLANT & CELL PHYSIOLOGY 2010; 51:1942-1949. [PMID: 20837503 DOI: 10.1093/pcp/pcq142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In plant organelles, RNA editing frequently occurs in many transcripts, but little is known about its molecular mechanism. Eleven RNA editing sites are present in the moss Physcomitrella patens mitochondria. Recently PpPPR_71, one member of 10 DYW-subclass pentatricopeptide repeat (PPR-DYW) proteins, has been identified as a site-specific recognition factor for RNA editing in the mitochondrial transcript. In this study, we disrupted three genes encoding a PPR-DYW protein-PpPPR_56, PpPPR_77, and PpPPR_91-to investigate whether they are involved in RNA editing. Transient expression of an N-terminal amino acid sequence fused to the green fluorescent protein (GFP) suggests that the three PPR-DYW proteins are targeted to mitochondria. Disruption of each gene by homologous recombination revealed that PpPPR_56 was involved in RNA editing at the nad3 and nad4 sites, PpPPR_77 at the cox2 and cox3 sites, and PpPPR_91 at the nad5-2 site in the mitochondrial transcripts. The nucleotide sequences surrounding the two editing sites targeted by a single PPR-DYW protein share 42 to 56% of their identities. Thus, moss PPR-DYW proteins seem to be site-specific factors for RNA editing in mitochondrial transcripts.
Collapse
Affiliation(s)
- Shotaro Ohtani
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|