1
|
Carrió-Seguí À, Brunot-Garau P, Úrbez C, Miskolczi P, Vera-Sirera F, Tuominen H, Agustí J. Weight-induced radial growth in plant stems depends on PIN3. Curr Biol 2024; 34:4285-4293.e3. [PMID: 39260363 DOI: 10.1016/j.cub.2024.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
How multiple growth programs coordinate during development is a fundamental question in biology. During plant stem development, radial growth is continuously adjusted in response to longitudinal-growth-derived weight increase to guarantee stability.1,2,3 Here, we demonstrate that weight-stimulated stem radial growth depends on the auxin efflux carrier PIN3, which, upon weight increase, expands its cellular localization from the lower to the lateral sides of xylem parenchyma, phloem, procambium, and starch sheath cells, imposing a radial auxin flux that results in radial growth. Using the protein synthesis inhibitor cycloheximide (CHX) or the fluorescent endocytic tracer FM4-64, we reveal that this expansion of the PIN3 cellular localization domain occurs because weight increase breaks the balance between PIN3 biosynthesis and removal, favoring PIN3 biosynthesis. Experimentation using brefeldin A (BFA) treatments or arg1 and arl2 mutants further supports this conclusion. Analyses of CRISPR-Cas9 lines for Populus PIN3 orthologs reveals that PIN3 dependence of weight-induced radial growth is conserved at least in these woody species. Altogether, our work sheds new light on how longitudinal and radial growth coordinate during stem development.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain; Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Paula Brunot-Garau
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Pál Miskolczi
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Hannele Tuominen
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain.
| |
Collapse
|
2
|
Yemets A, Shadrina R, Blume R, Plokhovska S, Blume Y. Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana. NPJ Microgravity 2024; 10:31. [PMID: 38499552 PMCID: PMC10948825 DOI: 10.1038/s41526-024-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy plays an important role in plant growth and development, pathogen invasion and modulates plant response and adaptation to various abiotic stress stimuli. The biogenesis and trafficking of autophagosomes involve microtubules (MTs) as important actors in the autophagic process. However, initiation of autophagy in plants under microgravity has not been previously studied. Here we demonstrate how simulated microgravity induces autophagy development involving microtubular reorganization during period of autophagosome formation. It was shown that induction of autophagy with maximal autophagosome formation in root cells of Arabidopsis thaliana is observed after 6 days of clinostating, along with MT disorganization, which leads to visible changes in root morphology. Gradual decrease of autophagosome number was indicated on 9th and 12th days of the experiment as well as no significant re-orientation of MTs were identified. Respectively, analysis of α- and β-tubulins and ATG8 gene expression was carried out. In particular, the most pronounced increase of expression on both 6th and 9th days in response to simulated microgravity was detected for non-paralogous AtATG8b, AtATG8f, AtATG8i, and AtTUA2, AtTUA3 genes, as well as for the pair of β-tubulin duplicates, namely AtTUB2 and AtTUB3. Overall, the main autophagic response was observed after 6 and 9 days of exposure to simulated microgravity, followed by adaptive response after 12 days. These findings provide a key basis for further studies of cellular mechanisms of autophagy and involvement of cytoskeletal structures in autophagy biogenesis under microgravity, which would enable development of new approaches, aimed on enhancing plant adaptation to microgravity.
Collapse
Affiliation(s)
- Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Ruslana Shadrina
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Rostyslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Svitlana Plokhovska
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| |
Collapse
|
3
|
Barton S, Broad Z, Ortiz-Barrientos D, Donovan D, Lefevre J. Hypergraphs and centrality measures identifying key features in gene expression data. Math Biosci 2023; 366:109089. [PMID: 37914024 DOI: 10.1016/j.mbs.2023.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multidisciplinary approaches can significantly advance our understanding of complex systems. For instance, gene co-expression networks align prior knowledge of biological systems with studies in graph theory, emphasising pairwise gene to gene interactions. In this paper, we extend these ideas, promoting hypergraphs as an investigative tool for studying multi-way interactions in gene expression data. Additional freedoms are achieved by representing individual genes with hyperedges, and simultaneously testing each gene against many features/vertices. Further gene/hyperedge interactions can be captured and explored using the line graph representations, a technique that reduces the complexity of dense hypergraphs. Such an approach provides access to graph centrality measures, which identifies salient features within a data set. For instance dominant or hub-like hyperedges, leading to key knowledge on gene expression. The validity of this approach is established through the study of gene expression data for the plant species Senecio lautus and results will be interpreted within this biological setting.
Collapse
Affiliation(s)
- Samuel Barton
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| | - Zoe Broad
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Diane Donovan
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - James Lefevre
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
4
|
Kim SC, Mason A, Im W. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields. J Vis Exp 2016. [PMID: 27500712 DOI: 10.3791/53967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.
Collapse
Affiliation(s)
| | | | - Wooseok Im
- Biomedical Research Institute, Seoul National University Hospital
| |
Collapse
|
5
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Abstract
Physical working capacity decreases with age and also in microgravity. Regardless of age, increased physical activity can always improve the physical adaptability of the body, although the mechanisms of this adaptability are unknown. Physical exercise produces various mechanical stimuli in the body, and these stimuli may be essential for cell survival in organisms. The cytoskeleton plays an important role in maintaining cell shape and tension development, and in various molecular and/or cellular organelles involved in cellular trafficking. Both intra and extracellular stimuli send signals through the cytoskeleton to the nucleus and modulate gene expression via an intrinsic property, namely the "dynamic instability" of cytoskeletal proteins. αB-crystallin is an important chaperone for cytoskeletal proteins in muscle cells. Decreases in the levels of αB-crystallin are specifically associated with a marked decrease in muscle mass (atrophy) in a rat hindlimb suspension model that mimics muscle and bone atrophy that occurs in space and increases with passive stretch. Moreover, immunofluorescence data show complete co-localization of αB-crystallin and the tubulin/microtubule system in myoblast cells. This association was further confirmed in biochemical experiments carried out in vitro showing that αB-crystallin acts as a chaperone for heat-denatured tubulin and prevents microtubule disassembly induced by calcium. Physical activity induces the constitutive expression of αB-crystallin, which helps to maintain the homeostasis of cytoskeleton dynamics in response to gravitational forces. This relationship between chaperone expression levels and regulation of cytoskeletal dynamics observed in slow anti-gravitational muscles as well as in mammalian striated muscles, such as those in the heart, diaphragm and tongue, may have been especially essential for human evolution in particular. Elucidation of the intrinsic properties of the tubulin/microtubule and chaperone αB-crystallin protein complex systems is expected to provide valuable information for high-pressure bioscience and gravity health science.
Collapse
Affiliation(s)
- Yoriko Atomi
- 204 Research Center for Science and Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan,
| |
Collapse
|
7
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
8
|
Hoson T, Soga K, Wakabayashi K, Hashimoto T, Karahara I, Yano S, Tanigaki F, Shimazu T, Kasahara H, Masuda D, Kamisaka S. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:91-6. [PMID: 24148142 DOI: 10.1111/plb.12099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/18/2013] [Indexed: 05/24/2023]
Abstract
Cortical microtubules are involved in plant resistance to hypergravity, but their roles in resistance to 1 g gravity are still uncertain. To clarify this point, we cultivated an Arabidopsis α-tubulin 6 mutant (tua6) in the Cell Biology Experiment Facility on the Kibo Module of the International Space Station, and analyzed growth and cell wall mechanical properties of inflorescences. Growth of inflorescence stems was stimulated under microgravity conditions, as compared with ground and on-orbit 1 g conditions. The stems were 10-45% longer and their growth rate 15-55% higher under microgravity conditions than those under both 1 g conditions. The degree of growth stimulation tended to be higher in the tua6 mutant than the wild-type Columbia. Under microgravity conditions, the cell wall extensibility in elongating regions of inflorescences was significantly higher than the controls, suggesting that growth stimulation was caused by cell wall modifications. No clear differences were detected in any growth or cell wall property between ground and on-orbit 1 g controls. These results support the hypothesis that cortical microtubules generally play an important role in plant resistance to the gravitational force.
Collapse
Affiliation(s)
- T Hoson
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Herranz R, Medina FJ. Cell proliferation and plant development under novel altered gravity environments. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:23-30. [PMID: 24112664 DOI: 10.1111/plb.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 05/11/2023]
Abstract
Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in that they can experience changes without the risk of being deleterious and, for this reason, they should play a key role in the response to gravitational stress.
Collapse
Affiliation(s)
- R Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | |
Collapse
|
10
|
Chebli Y, Geitmann A. Gravity research on plants: use of single-cell experimental models. FRONTIERS IN PLANT SCIENCE 2011; 2:56. [PMID: 22639598 PMCID: PMC3355640 DOI: 10.3389/fpls.2011.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/05/2011] [Indexed: 05/10/2023]
Abstract
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - Anja Geitmann
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
11
|
Vandenbussche F, Suslov D, De Grauwe L, Leroux O, Vissenberg K, Van Der Straeten D. The role of brassinosteroids in shoot gravitropism. PLANT PHYSIOLOGY 2011; 156:1331-6. [PMID: 21571670 PMCID: PMC3135960 DOI: 10.1104/pp.111.177873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/11/2011] [Indexed: 05/18/2023]
|
12
|
|