1
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
2
|
Liu H, Zhang G, Wang J, Li J, Song Y, Qiao L, Niu N, Wang J, Ma S, Li L. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome. BMC PLANT BIOLOGY 2018; 18:7. [PMID: 29304738 PMCID: PMC5755283 DOI: 10.1186/s12870-017-1225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. RESULTS We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. CONCLUSIONS Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.
Collapse
Affiliation(s)
- Hongzhan Liu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Gaisheng Zhang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jingjing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yulong Song
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Qiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Na Niu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junwei Wang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shoucai Ma
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
3
|
DeBlasio SL, Johnson R, Sweeney MM, Karasev A, Gray SM, MacCoss MJ, Cilia M. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection. Proteomics 2015; 15:2098-112. [PMID: 25787689 DOI: 10.1002/pmic.201400594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/08/2015] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Alexander Karasev
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Li X, Bai T, Li Y, Ruan X, Li H. Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Sci 2013; 11:41. [PMID: 24070062 PMCID: PMC3850410 DOI: 10.1186/1477-5956-11-41] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/22/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. RESULTS Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible 'Brazil' were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant 'Nongke No.1' were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant 'Yueyoukang I' were mainly involved in defense. 12 differentially regulated genes were selected to validate through quantitative real time PCR method. Quantitative RT-PCR analyses of these selected genes corroborate with their respective protein abundance after pathogen infection. CONCLUSIONS This report is the first to use proteomic profiling to study the molecular mechanism of banana roots infected with Foc4. The differentially regulated proteins involved in different defense pathways are likely associated with different resistant levels of the three banana cultivars.
Collapse
Affiliation(s)
- Xingshen Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Bai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yunfeng Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolei Ruan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huaping Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:44. [PMID: 23487525 PMCID: PMC3594732 DOI: 10.3389/fpls.2013.00044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/20/2013] [Indexed: 05/18/2023]
Abstract
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Gilor Kelly
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
6
|
Castillejo MÁ, Fernández-Aparicio M, Rubiales D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:107-19. [PMID: 21920908 DOI: 10.1093/jxb/err246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Crenate broomrape (Orobanche crenata) is considered to be the major constraint for legume crops in Mediterranean countries. Strategies of control have been developed, but only marginal successes have been achieved. For the efficient control of the parasite, a better understanding of its interaction and associated resistance mechanisms at the molecular level is required. The pea response to this parasitic plant and the molecular basis of the resistance was studied using a proteomic approach based on 2D DIGE and MALDI-MSMS analysis. For this purpose, two genotypes showing different levels of resistance to O. crenata, as well as three time points (21, 25, and 30 d after inoculation) have been compared. Multivariate statistical analysis identified 43 differential protein spots under the experimental conditions (genotypes/treatments), 22 of which were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the proteins identified were metabolic and stress-related proteins and a high percentage of them (86%) matched with specific proteins of legume species. The behaviour pattern of the identified proteins suggests the existence of defence mechanisms operating during the early stages of infection that differed in both genotypes. Among these, several proteins were identified with protease activity which could play an important role in preventing the penetration and connection to the vascular system of the parasite. Our data are discussed and compared with those previously obtained in pea and Medicago truncatula.
Collapse
|