1
|
Nakagami S, Kajiwara T, Tsuda K, Sawa S. CLE peptide signaling in plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1481650. [PMID: 39507357 PMCID: PMC11538016 DOI: 10.3389/fpls.2024.1481650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Cell-cell communication is essential for both unicellular and multicellular organisms. Secreted peptides that act as diffusive ligands are utilized by eukaryotic organisms to transduce information between cells to coordinate developmental and physiological processes. In plants, The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes encode a family of secreted small peptides which play pivotal roles in stem cell homeostasis in various types of meristems. Accumulated evidence has revealed that CLE peptides mediate trans-kingdom interactions between plants and microbes, including pathogens and symbionts. This review highlights the emerging roles of CLE peptide signaling in plant-microbe interactions, focusing on their involvement in nodulation, immunity, and symbiosis with arbuscular mycorrhizal fungi. Understanding these interactions provides insights into the sophisticated regulatory networks to balance plant growth and defense, enhancing our knowledge of plant biology and potential agricultural applications.
Collapse
Affiliation(s)
- Satoru Nakagami
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Thomas J, Frugoli J. Mutation of BAM2 rescues the sunn hypernodulation phenotype in Medicago truncatula, suggesting that a signaling pathway like CLV1/BAM in Arabidopsis affects nodule number. FRONTIERS IN PLANT SCIENCE 2024; 14:1334190. [PMID: 38273950 PMCID: PMC10808729 DOI: 10.3389/fpls.2023.1334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatula is SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors in Arabidopsis involved in regulating stem cell populations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAM1 and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supernodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdn1-2 or crn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaling; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. truncatula.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
3
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
4
|
Wang C, Reid JB, Foo E. The role of CLV1, CLV2 and HPAT homologues in the nitrogen-regulation of root development. PHYSIOLOGIA PLANTARUM 2020; 170:607-621. [PMID: 32880978 DOI: 10.1111/ppl.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.
Collapse
Affiliation(s)
- Chenglei Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
5
|
Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J, Mysore KS, Dai X, Zhao PX, de Bang TC. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4972-4984. [PMID: 32309861 PMCID: PMC7410177 DOI: 10.1093/jxb/eraa193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/17/2020] [Indexed: 05/13/2023]
Abstract
Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.
Collapse
Affiliation(s)
- Magda Karlo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Katrine Gram Landerslev
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Gonzalo Sancho Blanco
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Xinbin Dai
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Thomas C de Bang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Vu MH, Iswanto ABB, Lee J, Kim JY. The Role of Plasmodesmata-Associated Receptor in Plant Development and Environmental Response. PLANTS 2020; 9:plants9020216. [PMID: 32046090 PMCID: PMC7076680 DOI: 10.3390/plants9020216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Over the last decade, plasmodesmata (PD) symplasmic nano-channels were reported to be involved in various cell biology activities to prop up within plant growth and development as well as environmental stresses. Indeed, this is highly influenced by their native structure, which is lined with the plasma membrane (PM), conferring a suitable biological landscape for numerous plant receptors that correspond to signaling pathways. However, there are more than six hundred members of Arabidopsis thaliana membrane-localized receptors and over one thousand receptors in rice have been identified, many of which are likely to respond to the external stimuli. This review focuses on the class of plasmodesmal-receptor like proteins (PD-RLPs)/plasmodesmal-receptor-like kinases (PD-RLKs) found in planta. We summarize and discuss the current knowledge regarding RLPs/RLKs that reside at PD-PM channels in response to plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Minh Huy Vu
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
- Correspondence: (A.B.B.I.); (J.-Y.K.)
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (A.B.B.I.); (J.-Y.K.)
| |
Collapse
|
7
|
Laffont C, De Cuyper C, Fromentin J, Mortier V, De Keyser A, Verplancke C, Holsters M, Goormachtig S, Frugier F. MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula. Sci Rep 2018; 8:2046. [PMID: 29391543 PMCID: PMC5794917 DOI: 10.1038/s41598-018-20359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Peptides are signaling molecules regulating various aspects of plant development, including the balance between cell division and differentiation in different meristems. Among those, CLAVATA3/Embryo Surrounding Region-related (CLE-ESR) peptide activity depends on leucine-rich-repeat receptor-like-kinases (LRR-RLK) belonging to the subclass XI. In legume plants, such as the Medicago truncatula model, specific CLE peptides were shown to regulate root symbiotic nodulation depending on the LRR-RLK SUNN (Super Numeric Nodules). Amongst the ten M. truncatula LRR-RLK most closely related to SUNN, only one showed a nodule-induced expression, and was so-called MtNRLK1 (Nodule-induced Receptor-Like Kinase 1). MtNRLK1 expression is associated to root and nodule vasculature as well as to the proximal meristem and rhizobial infection zone in the nodule apex. Except for the root vasculature, the MtNRLK1 symbiotic expression pattern is different than the one of MtSUNN. Functional analyses either based on RNA interference, insertional mutagenesis, and overexpression of MtNRLK1 however failed to identify a significant nodulation phenotype, either regarding the number, size, organization or nitrogen fixation capacity of the symbiotic organs formed.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Carolien De Cuyper
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Justine Fromentin
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Virginie Mortier
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Annick De Keyser
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Christa Verplancke
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Marcelle Holsters
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Sofie Goormachtig
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Crook AD, Schnabel EL, Frugoli JA. The systemic nodule number regulation kinase SUNN in Medicago truncatula interacts with MtCLV2 and MtCRN. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:108-119. [PMID: 27296908 DOI: 10.1111/tpj.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
Autoregulation of nodulation (AON), a systemic signaling pathway in legumes, limits the number of nodules formed by the legume in its symbiosis with rhizobia. Recent research suggests a model for the systemic regulation in Medicago truncatula in which root signaling peptides are translocated to the shoot where they bind to a shoot receptor complex containing the leucine-rich repeat receptor-like kinase SUNN, triggering signal transduction which terminates nodule formation in roots. Here we show that a tagged SUNN protein capable of rescuing the sunn-4 phenotype is localized to the plasma membrane and is associated with the plasmodesmata. Using bimolecular fluorescence complementation analysis we show that, like its sequence ortholog Arabidopsis CLV1, SUNN interacts with homologous CLV1-interacting proteins MtCLAVATA2 and MtCORYNE. All three proteins were also able to form homomers and MtCRN and MtCLV2 also interact with each other. A crn Tnt1 insertion mutant of M. truncatula displayed a shoot controlled increased nodulation phenotype, similar to the clv2 mutants of pea and Lotus japonicus. Together these data suggest that legume AON signaling could occur through a multi-protein complex and that both MtCRN and MtCLV2 may play roles in AON together with SUNN.
Collapse
Affiliation(s)
- Ashley D Crook
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA
| | - Elise L Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA
| | - Julia A Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29630-0318, USA.
| |
Collapse
|
9
|
Koramutla MK, Bhatt D, Negi M, Venkatachalam P, Jain PK, Bhattacharya R. Strength, Stability, and cis-Motifs of In silico Identified Phloem-Specific Promoters in Brassica juncea (L.). FRONTIERS IN PLANT SCIENCE 2016; 7:457. [PMID: 27148290 PMCID: PMC4834444 DOI: 10.3389/fpls.2016.00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
Aphids, a hemipteran group of insects pose a serious threat to many of the major crop species including Brassica oilseeds. Transgenic strategies for developing aphid-resistant plant types necessitate phloem-bound expression of the insecticidal genes. A few known phloem-specific promoters, in spite of tissue-specific activity fail to confer high level gene-expression. Here, we identified seven orthologues of phloem-specific promoters in B. juncea (Indian mustard), and experimentally validated their strength of expression in phloem exudates. Significant cis-motifs, globally occurring in phloem-specific promoters showed variable distribution frequencies in these putative phloem-specific promoters of B. juncea. In RT-qPCR based gene-expression study promoter of Glutamine synthetase 3A (GS3A) showed multifold higher activity compared to others, across the different growth stages of B. juncea plants. A statistical method employing four softwares was devised for rapidly analysing stability of the promoter-activities across the plant developmental stages. Different statistical softwares ranked these B. juncea promoters differently in terms of their stability in promoter-activity. Nevertheless, the consensus in output empirically suggested consistency in promoter-activity of the six B. juncea phloem- specific promoters including GS3A. The study identified suitable endogenous promoters for high level and consistent gene-expression in B. juncea phloem exudate. The study also demonstrated a rapid method of assessing species-specific strength and stability in expression of the endogenous promoters.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Deepa Bhatt
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | | | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
- *Correspondence: Ramcharan Bhattacharya ;
| |
Collapse
|
10
|
Oellrich A, Walls RL, Cannon EKS, Cannon SB, Cooper L, Gardiner J, Gkoutos GV, Harper L, He M, Hoehndorf R, Jaiswal P, Kalberer SR, Lloyd JP, Meinke D, Menda N, Moore L, Nelson RT, Pujar A, Lawrence CJ, Huala E. An ontology approach to comparative phenomics in plants. PLANT METHODS 2015; 11:10. [PMID: 25774204 PMCID: PMC4359497 DOI: 10.1186/s13007-015-0053-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant phenotype datasets include many different types of data, formats, and terms from specialized vocabularies. Because these datasets were designed for different audiences, they frequently contain language and details tailored to investigators with different research objectives and backgrounds. Although phenotype comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited by the absence of a common semantic framework. RESULTS We developed a workflow to curate and standardize existing phenotype datasets for six plant species, encompassing both model species and crop plants with established genetic resources. Our effort focused on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein functions, and shared metabolic pathways that underlie informative plant phenotypes. CONCLUSIONS The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon phenotype data analyses represents a novel approach to plant phenomics that enhances the utility of model genetic organisms and can be readily applied to species with fewer genetic resources and less well-characterized genomes. In addition, these tools should enhance future efforts to explore the relationships among phenotypic similarity, gene function, and sequence similarity in plants, and to make genotype-to-phenotype predictions relevant to plant biology, crop improvement, and potentially even human health.
Collapse
Affiliation(s)
- Anika Oellrich
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Ramona L Walls
- />iPlant Collaborative, University of Arizona, 1657 E. Helen St., Tucson, Arizona 85721 USA
| | - Ethalinda KS Cannon
- />Department of Electrical and Computer Engineering Iowa State University, 1018 Crop Informatics Lab, Ames, Iowa 50011 USA
| | - Steven B Cannon
- />USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Crop Genome Informatics Lab, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50010 USA
| | - Laurel Cooper
- />Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331 USA
| | - Jack Gardiner
- />Department of Genetics, Development and Cell Biology, Roy J Carver Co-Laboratory, Iowa State University, Ames, IA 50010 USA
| | - Georgios V Gkoutos
- />Department of Computer Science, Aberystwyth University, Llandinam Building, Aberystwyth, SY23 3DB UK
| | - Lisa Harper
- />USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Crop Genome Informatics Lab, Iowa State University, Ames, IA 50011 USA
| | - Mingze He
- />Department of Genetics, Development and Cell Biology, Roy J Carver Co-Laboratory, Iowa State University, Ames, IA 50010 USA
| | - Robert Hoehndorf
- />Computer, Electrical and Mathematical Sciences & Engineering Division and Computational Bioscience Research Center, King Abdullah University of Science and Technology, 4700 King Abdullah University of Science and Technology, P.O. Box 2882, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Pankaj Jaiswal
- />Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331 USA
| | - Scott R Kalberer
- />USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Crop Genome Informatics Lab, Iowa State University, Ames, IA 50011 USA
| | - John P Lloyd
- />Department of Plant Biology, Michigan State University, 220 Trowbridge Rd, East Lansing, MI 48824 USA
| | - David Meinke
- />Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078 USA
| | - Naama Menda
- />Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853 USA
| | - Laura Moore
- />Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331 USA
| | - Rex T Nelson
- />USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Crop Genome Informatics Lab, Iowa State University, Ames, IA 50011 USA
| | - Anuradha Pujar
- />Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853 USA
| | - Carolyn J Lawrence
- />Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50010 USA
- />Department of Genetics, Development and Cell Biology, Roy J Carver Co-Laboratory, Iowa State University, Ames, IA 50010 USA
| | - Eva Huala
- />Phoenix Bioinformatics, 643 Bair Island Rd Suite 403, Redwood City, CA 94063 USA
| |
Collapse
|
11
|
Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet 2014; 10:e1004891. [PMID: 25521478 PMCID: PMC4270686 DOI: 10.1371/journal.pgen.1004891] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022] Open
Abstract
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions. Despite the essential functions of roots in plant access to water and nutrients, root system architecture has not been directly considered for crop breeding improvement, but it is now considered key for a “second green revolution.” In this study, we aimed to decipher integrated molecular mechanisms coordinating lateral organ development in legume roots: lateral roots and nitrogen-fixing symbiotic nodules. The compact root architecture 2 (cra2) mutant form an increased number of lateral roots and a reduced number of symbiotic nitrogen-fixing nodules. This mutant is affected in a CLAVATA1-like Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that has not previously been linked to root development. Grafting experiments showed that CRA2 negatively controls lateral root formation and positively controls nodule development through local and systemic pathways, respectively. Overall, our results can be integrated in the framework of regulatory pathways controlling the symbiotic nodule number, the so-called “Autoregulation of Nodulation” (AON), involving another LRR-RLK that also acts systemically from the shoots, SUNN (Super Numeric Nodules). A coordinated function of the CRA2 and SUNN LRR-RLKs may thereby permit the dynamic fine tuning of the nodule number depending on the environmental conditions.
Collapse
|