1
|
Shen S, Pan L, Li J, Wang J, Ahmad I, Liu H, Bai Y, Kang B, Yin J, Gao Y, Lu Y, Wang X. The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2025; 14:929. [PMID: 40265823 PMCID: PMC11945280 DOI: 10.3390/plants14060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoshan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (L.P.); (J.L.); (J.W.); (I.A.); (H.L.); (Y.B.); (B.K.); (J.Y.); (Y.G.); (Y.L.)
| |
Collapse
|
2
|
Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A. Trichoderma pubescens Elicit Induced Systemic Resistance in Tomato Challenged by Rhizoctonia solani. J Fungi (Basel) 2023; 9:jof9020167. [PMID: 36836282 PMCID: PMC9961125 DOI: 10.3390/jof9020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Rhizoctonia solani causes severe diseases in many plant species, particularly root rot in tomato plants. For the first time, Trichoderma pubescens effectively controls R. solani in vitro and in vivo. R. solani strain R11 was identified using the ITS region (OP456527); meanwhile, T. pubescens strain Tp21 was characterized by the ITS region (OP456528) and two genes (tef-1 and rpb2). The antagonistic dual culture method revealed that T. pubescens had a high activity of 76.93% in vitro. A substantial increase in root length, plant height, shoot fresh and dry, and root fresh and dry weight was indicated after applying T. pubescens to tomato plants in vivo. Additionally, it significantly increased the chlorophyll content and total phenolic compounds. The treatment with T. pubescens exhibited a low disease index (DI, 16.00%) without significant differences with Uniform® fungicide at a concentration of 1 ppm (14.67%), while the R. solani-infected plants showed a DI of 78.67%. At 15 days after inoculation, promising increases in the relative expression levels of three defense-related genes (PAL, CHS, and HQT) were observed in all T. pubescens treated plants compared with the non-treated plants. Plants treated with T. pubescens alone showed the highest expression value, with relative transcriptional levels of PAL, CHS, and HQT that were 2.72-, 4.44-, and 3.72-fold higher in comparison with control plants, respectively. The two treatments of T. pubescens exhibited increasing antioxidant enzyme production (POX, SOD, PPO, and CAT), while high MDA and H2O2 levels were observed in the infected plants. The HPLC results of the leaf extract showed a fluctuation in polyphenolic compound content. T. pubescens application alone or for treating plant pathogen infection showed elevated phenolic acids such as chlorogenic and coumaric acids. Therefore, the ability of T. pubescens to inhibit the growth of R. solani, enhance the development of tomato plants, and induce systemic resistance supports the application of T. pubescens as a potential bioagent for managing root rot disease and productivity increase of crops.
Collapse
Affiliation(s)
- Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Seham A. Soliman
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Magdy A. Massoud
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Moawad Abdelbary
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed M. Kordy
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
3
|
Rattan UK, Kumar S, Kumari R, Bharti M, Hallan V. Homeobox 27, a Homeodomain Transcription Factor, Confers Tolerances to CMV by Associating with Cucumber Mosaic Virus 2b Protein. Pathogens 2022; 11:pathogens11070788. [PMID: 35890032 PMCID: PMC9323240 DOI: 10.3390/pathogens11070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play an important role in plant development; however, their role during viral infection largely remains unknown. The present study was designed to uncover the role transcription factors play in Cucumber mosaic virus (CMV) infection. During the screening of an Arabidopsis thaliana (Col-0) transcription factor library, using the CMV 2b protein as bait in the yeast two-hybrid system, the 2b protein interacted with Homeobox protein 27 (HB27). HB27 belongs to the zinc finger homeodomain family and is known to have a regulatory role in flower development, and responses to biotic and abiotic stress. The interaction between CMV 2b and HB27 proteins was further validated using in planta (bimolecular fluorescence complementation assay) and in vitro far-Western blotting (FWB) methods. In the bimolecular fluorescence complementation assay, these proteins reconstituted YFP fluorescence in the nucleus and the cytoplasmic region as small fluorescent dots. In FWB, positive interaction was detected using bait anti-MYC antibody on the target HB27-HA protein. During CMV infection, upregulation (~3-fold) of the HB27 transcript was observed at 14 days post-infection (dpi) in A. thaliana plants, and expression declined to the same as healthy plants at 21 dpi. To understand the role of the HB27 protein during CMV infection, virus accumulation was determined in HB27-overexpressing (HB27 OE) and knockout mutants. In HB27-overexpressing lines, infected plants developed mild symptoms, accumulating a lower virus titer at 21 dpi compared to wild-type plants. Additionally, knockout HB27 mutants had more severe symptoms and a higher viral accumulation than wild-type plants. These results indicate that HB27 plays an important role in the regulation of plant defense against plant virus infection.
Collapse
Affiliation(s)
- Usha Kumari Rattan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Kumar
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Reenu Kumari
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- College of Horticulture and Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Thunag, Mandi 175048, India
| | - Monika Bharti
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Vipin Hallan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-1894-233338; Fax: +91-1894-230433
| |
Collapse
|
4
|
Trichoderma hamatum Strain Th23 Promotes Tomato Growth and Induces Systemic Resistance against Tobacco Mosaic Virus. J Fungi (Basel) 2022; 8:jof8030228. [PMID: 35330230 PMCID: PMC8951347 DOI: 10.3390/jof8030228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Trichoderma hamatum strain Th23, isolated from tomato roots, was molecularly identified using phylogenetic analysis based on ITS, tef1, and rpb2 gene sequences and evaluated for its efficiency in suppressing tobacco mosaic virus (TMV) infection for the first time. Under greenhouse conditions, the application of Th23 promoted tomato growth with significant increases in shoot and root parameters as well as improved total chlorophyll content. Compared to the nontreated tomato plants, the soil pretreatment of tomato plants 48 h before TMV inoculation produced a significant reduction in the TMV accumulation level by 84.69% and enhanced different growth parameters. In contrast, TMV had a deleterious impact on fresh and dry matter accumulation and inhibited photosynthetic capacity. Furthermore, the protective activity of Th23 was associated with a significant increase in reactive oxygen species scavenging enzymes (PPO, CAT, and SOD) as well as decreased nonenzymatic oxidative stress markers (H2O2 and MDA) compared to the TMV treatment at 15 days post-viral inoculation (dpi). In addition, considerable increases in the transcriptional levels of polyphenolic genes (HQT and CHS) and pathogenesis-related proteins (PR-1 and PR-7) were shown to induce systemic resistance against TMV. Consequently, the ability of T. hamatum strain Th23 to promote plant growth, induce systemic resistance, and boost innate immunity against TMV infestation supported the incorporation of Th23 as a potential biocontrol agent for managing plant viral infections. To the best of our knowledge, this is the first report of the antiviral activity of T. hamatum against plant viral infection.
Collapse
|
5
|
Holeva MC, Sklavounos A, Rajeswaran R, Pooggin MM, Voloudakis AE. Topical Application of Double-Stranded RNA Targeting 2b and CP Genes of Cucumber mosaic virus Protects Plants against Local and Systemic Viral Infection. PLANTS 2021; 10:plants10050963. [PMID: 34066062 PMCID: PMC8151262 DOI: 10.3390/plants10050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.
Collapse
Affiliation(s)
- Maria C. Holeva
- Laboratory of Bacteriology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Kifissia, Greece;
| | - Athanasios Sklavounos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Office of Rural Development and Inspections of Kephalonia, Ministry of Rural Development and Food, 28100 Argostoli, Greece
| | - Rajendran Rajeswaran
- Department of Biology, Swiss Federal Institute of Technology (ETH), Universitätsstrasse 2, 8092 Zürich, Switzerland;
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, 34980 Montpellier, France;
| | - Andreas E. Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: ; Tel.: +30-2105294213
| |
Collapse
|
6
|
Martínez-Pérez M, Navarro JA, Pallás V, Sánchez-Navarro JA. A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Res 2019; 272:197733. [DOI: 10.1016/j.virusres.2019.197733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/01/2022]
|
7
|
Murota K, Shimura H, Takeshita M, Masuta C. Interaction between Cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. PLANT CELL REPORTS 2017; 36:37-47. [PMID: 27659495 PMCID: PMC5206265 DOI: 10.1007/s00299-016-2055-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 05/20/2023]
Abstract
Cucumber mosaic virus (CMV) can induce a specific necrosis on Arabidopsis through the interaction between the CMV 2b protein and host catalase, in which the ubiquitin-proteasome pathway may be involved. We previously reported that the CMV 2b protein, the viral RNA silencing suppressor, interacted with the H2O2 scavenger catalase (CAT3), leading to necrosis on CMV-inoculated Arabidopsis leaves. We here confirmed that CMV could more abundantly accumulate in the CAT3-knockout mutant (cat3), and that CAT3 makes host plants a little more tolerant to CMV. We also found that the necrosis severity is not simply explained by a high level of H2O2 given by the lack of CAT3, because the recombinant CMV, CMV-N, induced much milder necrosis in cat3 than in the wild type, suggesting some specific mechanism for the necrosis induction. To further characterize the 2b-inducing necrosis in relation to its binding to CAT3, we conducted the agroinfiltration experiments to overexpress CAT3 and 2b in N. benthamiana leaves. The accumulation levels of CAT3 were higher when co-expressed with the CMV-N 2b (N2b) than with CMV-Y 2b (Y2b). We infer that N2b made a more stable complex with CAT3 than Y2b did, and the longevity of the 2b-CAT3 complex seemed to be important to induce necrosis. By immunoprecipitation (IP) with an anti-ubiquitin antibody followed by the detection with anti-CAT3 antibodies, we detected a higher molecular-weight smear and several breakdown products of CAT3 among the IP-proteins. In addition, the proteasome inhibitor MG132 treatment could actually increase the accumulation levels of CAT3. This study suggests that the host proteasome pathway is, at least partially, responsible for the degradation of CAT3, which is manifested in CMV-infected tissues.
Collapse
Affiliation(s)
- Katsunori Murota
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan.
| | - Minoru Takeshita
- Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
8
|
Yergaliyev TM, Nurbekova Z, Mukiyanova G, Akbassova A, Sutula M, Zhangazin S, Bari A, Tleukulova Z, Shamekova M, Masalimov ZK, Omarov RT. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:36-44. [PMID: 27632242 DOI: 10.1016/j.plaphy.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 05/01/2023]
Abstract
The influence of Tomato bushy stunt virus (TBSV) infection on the activity and isoformic composition of aldehyde oxidase and catalase in Nicotiana benthamiana plants was investigated. It was shown that the infection of plants with TBSV results in enhancement of leaf aldehyde oxidase (AO) isoforms AO2 and AO3. Significantly enhanced levels of superoxide radical producing activity of AO isoforms were also detected. This is the first demonstration of involvement of plant AO in defense mechanisms against viral infection. In addition, the infection caused an increased accumulation of hydrogen peroxide, compared to mock-inoculated plants. The virus infection resulted in increased activity of catalase (CAT) and superoxide dismutase (SOD) in roots and leaves of N. benthamiana. Moreover, activation of two additional CAT isoforms was observed in the leaves of plants after virus inoculation. Our findings indicate that the virus infection significantly affects enzymes responsible for the balance of ROS accumulation in plant tissue in response to pathogen attack.
Collapse
Affiliation(s)
- Timur M Yergaliyev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Zhadyrassyn Nurbekova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Alua Akbassova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Maxim Sutula
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan; Department of Biology and Ecology, S.Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan
| | - Assyl Bari
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Zhanerke Tleukulova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Malika Shamekova
- The Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Zhaksylyk K Masalimov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Rustem T Omarov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan.
| |
Collapse
|
9
|
Vitti A, Pellegrini E, Nali C, Lovelli S, Sofo A, Valerio M, Scopa A, Nuzzaci M. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus. FRONTIERS IN PLANT SCIENCE 2016; 7:1520. [PMID: 27777581 PMCID: PMC5056173 DOI: 10.3389/fpls.2016.01520] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/26/2016] [Indexed: 05/18/2023]
Abstract
Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.
Collapse
Affiliation(s)
- Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, PisaItaly
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, PisaItaly
| | - Stella Lovelli
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| | - Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| | - Maria Valerio
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| | - Antonio Scopa
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, Università degli Studi della Basilicata, PotenzaItaly
| |
Collapse
|
10
|
Faoro F, Gozzo F. Is modulating virus virulence by induced systemic resistance realistic? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:1-13. [PMID: 25804804 DOI: 10.1016/j.plantsci.2015.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Induction of plant resistance, either achieved by chemicals (systemic acquired resistance, SAR) or by rhizobacteria (induced systemic resistance, ISR) is a possible and/or complementary alternative to manage virus infections in crops. SAR mechanisms operating against viruses are diverse, depending on the pathosystem, and may inhibit virus replication as well as cell-to-cell and long-distance movement. Inhibition is often mediated by salicylic acid with the involvement of alternative oxidase and reactive oxygen species. However, salicylate may also stimulate a separate downstream pathway, leading to the induction of an additional mechanism, based on RNA-dependent RNA polymerase 1-mediated RNA silencing. Thus, SAR and RNA silencing would closely cooperate in the defence against virus infection. Despite tremendous recent progress in the knowledge of SAR mechanisms, only a few compounds, including benzothiadiazole and chitosan have been shown to reduce the severity of systemic virus disease in controlled environment and, more modestly, in open field. Finally, ISR induction, has proved to be a promising strategy to control virus disease, particularly by seed bacterization with a mixture of plant growth-promoting rhizobacteria. However, the use of any of these treatments should be integrated with cultivation practices that reduce vector pressure by the use of insecticides, or by Bt crops.
Collapse
Affiliation(s)
- Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy; CNR, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Turin, Italy.
| | - Franco Gozzo
- Department of Food, Environmental and Nutritional Sciences, Section of Chemistry and Biomolecular Sciences, University of Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
11
|
Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:88-95. [PMID: 24875766 DOI: 10.1016/j.pbi.2014.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Chikara Masuta
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
12
|
Mochizuki T, Yamazaki R, Wada T, Ohki ST. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants. Virology 2014; 456-457:292-9. [PMID: 24889248 DOI: 10.1016/j.virol.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/23/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.
Collapse
Affiliation(s)
- Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryota Yamazaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoya Wada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Satoshi T Ohki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|