1
|
Garg R, Manhas I, Chaturvedi D. Unveiling the orchestration: mycobacterial small RNAs as key mediators in host-pathogen interactions. Front Microbiol 2024; 15:1399280. [PMID: 38903780 PMCID: PMC11188477 DOI: 10.3389/fmicb.2024.1399280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Small RNA (sRNA) molecules, a class of non-coding RNAs, have emerged as pivotal players in the regulation of gene expression and cellular processes. Mycobacterium tuberculosis and other pathogenic mycobacteria produce diverse small RNA species that modulate bacterial physiology and pathogenesis. Recent advances in RNA sequencing have enabled identification of novel small RNAs and characterization of their regulatory functions. This review discusses the multifaceted roles of bacterial small RNAs, covering their biogenesis, classification, and functional diversity. Small RNAs (sRNAs) play pivotal roles in orchestrating diverse cellular processes, ranging from gene silencing to epigenetic modifications, across a broad spectrum of organisms. While traditionally associated with eukaryotic systems, recent research has unveiled their presence and significance within bacterial domains as well. Unlike their eukaryotic counterparts, which primarily function within the context of RNA interference (RNAi) pathways, bacterial sRNAs predominantly act through base-pairing interactions with target mRNAs, leading to post-transcriptional regulation. This fundamental distinction underscores the necessity of elucidating the unique roles and regulatory mechanisms of bacterial sRNAs in bacterial adaptation and survival. By doing these myriad functions, they regulate bacterial growth, metabolism, virulence, and drug resistance. In Mycobacterium tuberculosis, apart from having various roles in the bacillus itself, small RNA molecules have emerged as key regulators of gene expression and mediators of host-pathogen interactions. Understanding sRNA regulatory networks in mycobacteria can drive our understanding of significant role they play in regulating virulence and adaptation to the host environment. Detailed functional characterization of Mtb sRNAs at the host-pathogen interface is required to fully elucidate the complex sRNA-mediated gene regulatory networks deployed by Mtb, to manipulate the host. A deeper understanding of this aspect could pave the development of novel diagnostic and therapeutic strategies for tuberculosis.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Human Genetics and Molecular Medicine, Amity School of Health Sciences, Amity University, Mohali, Punjab, India
| | - Ishali Manhas
- Department of Biotechnology, Amity School of Biological Sciences, Amity University, Mohali, Punjab, India
| | - Diksha Chaturvedi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
2
|
Mediati DG, Wong JL, Gao W, McKellar S, Pang CNI, Wu S, Wu W, Sy B, Monk IR, Biazik JM, Wilkins MR, Howden BP, Stinear TP, Granneman S, Tree JJ. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance. Nat Commun 2022; 13:3558. [PMID: 35732665 PMCID: PMC9217812 DOI: 10.1038/s41467-022-31177-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart McKellar
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sylvania Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna M Biazik
- Electron Microscopy Unit, University of New South Wales, Kensington, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sander Granneman
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Wencker FDR, Marincola G, Schoenfelder SMK, Maaß S, Becher D, Ziebuhr W. Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay. Nucleic Acids Res 2021; 49:2192-2212. [PMID: 33450025 PMCID: PMC7913692 DOI: 10.1093/nar/gkaa1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.
Collapse
Affiliation(s)
- Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sonja M K Schoenfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
5
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
6
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
7
|
Svenningsen SL. Small RNA-Based Regulation of Bacterial Quorum Sensing and Biofilm Formation. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0017-2018. [PMID: 30003870 PMCID: PMC11633610 DOI: 10.1128/microbiolspec.rwr-0017-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 02/08/2023] Open
Abstract
Quorum sensing is a vital property of bacteria that enables community-wide coordination of collective behaviors. A key example of such a behavior is biofilm formation, in which groups of bacteria invest in synthesizing a protective, joint extracellular matrix. Quorum sensing involves the production, release, and subsequent detection of extracellular signaling molecules called autoinducers. The architecture of quorum-sensing signal transduction pathways is highly variable among different species of bacteria, but frequently involves posttranscriptional regulation carried out by small regulatory RNA molecules. This review illustrates the diverse roles small trans-acting regulatory RNAs can play, from constituting a network's core to auxiliary roles in adjusting the rate of autoinducer synthesis, mediating cross talk among different parts of a network, or integrating different regulatory inputs to trigger appropriate changes in gene expression. The emphasis is on describing how the study of small RNA-based regulation in quorum sensing and biofilm formation has uncovered new general properties or expanded our understanding of bacterial riboregulation.
Collapse
|
8
|
Le Scornet A, Redder P. Post-transcriptional control of virulence gene expression in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:734-741. [PMID: 29705591 DOI: 10.1016/j.bbagrm.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Opportunistic pathogens have to be ready to change life-style whenever the occasion arises, and therefore need to keep tight control over the expression of their virulence factors. Doubly so for commensal bacteria, such as Staphylococcus aureus, which should avoid harming their hosts when they are in a state of peaceful co-existence. S. aureus carries very few sigma factors to help define the transcriptional programs, but instead uses a plethora of small RNA molecules and RNA-RNA interactions to regulate gene expression post-transcriptionally. The endoribonucleases RNase III and RNase Y contribute to this regulatory diversity, and provide a link to RNA-decay and intra-cellular spatiotemporal control of expression. In this review we describe some of these post-transcriptional mechanisms as well as some of the novel transcriptomic approaches that have been used to find and to study them.
Collapse
Affiliation(s)
- Alexandre Le Scornet
- LMGM, Centre de Biologie Integrative, Paul Sabatier University, 118, Route de Narbonne, 31062 Toulouse, France
| | - Peter Redder
- LMGM, Centre de Biologie Integrative, Paul Sabatier University, 118, Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
9
|
Small RNA teg49 Is Derived from a sarA Transcript and Regulates Virulence Genes Independent of SarA in Staphylococcus aureus. Infect Immun 2018; 86:IAI.00635-17. [PMID: 29133345 DOI: 10.1128/iai.00635-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Expression of virulence factors in Staphylococcus aureus is regulated by a wide range of transcriptional regulators, including proteins and small RNAs (sRNAs), at the level of transcription and/or translation. The sarA locus consists of three overlapping transcripts generated from three distinct promoters, all containing the sarA open reading frame (ORF). The 5' untranslated regions (UTRs) of these transcripts contain three separate regions ∼711, 409, and 146 nucleotides (nt) upstream of the sarA translation start, the functions of which remain unknown. Recent transcriptome-sequencing (RNA-Seq) analysis and subsequent characterization indicated that two sRNAs, teg49 and teg48, are processed and likely produced from the sarA P3 and sarA P1 transcripts of the sarA locus, respectively. In this report, we utilized a variety of sarA promoter mutants and cshA and rnc mutants to ascertain the contributions of these factors to the generation of teg49. We also defined the transcriptional regulon of teg49, including virulence genes not regulated by SarA. Phenotypically, teg49 did not impact biofilm formation or affect overall SarA expression significantly. Comparative analyses of RNA-Seq data between the wild-type, teg49 mutant, and sarA mutant strains indicated that ∼133 genes are significantly upregulated while 97 are downregulated in a teg49 deletion mutant in a sarA-independent manner. An abscess model of skin infection indicated that the teg49 mutant exhibited a reduced bacterial load compared to the wild-type S. aureus Overall, these results suggest that teg49 sRNA has a regulatory role in target gene regulation independent of SarA. The exact mechanism of this regulation is yet to be dissected.
Collapse
|
10
|
Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 2017; 41:139-157. [PMID: 27965320 DOI: 10.1093/femsre/fuw042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2016] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection.
Collapse
Affiliation(s)
- Helene Buvelot
- Division of General Internal Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Klara M Posfay-Barbe
- Paediatric Infectious Diseases Unit, Department of Paediatrics, University Hospitals of Geneva, 1205 Geneva and Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Jacques Schrenzel
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
11
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
12
|
Zhang X, Zhu Q, Tian T, Zhao C, Zang J, Xue T, Sun B. Identification of RNAIII-binding proteins in Staphylococcus aureus using tethered RNAs and streptavidin aptamers based pull-down assay. BMC Microbiol 2015; 15:102. [PMID: 25976342 PMCID: PMC4435603 DOI: 10.1186/s12866-015-0435-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
Abstract
Background It has been widely recognized that small RNAs (sRNAs) play important roles in physiology and virulence control in bacteria. In Staphylococcus aureus, many sRNAs have been identified and some of them have been functionally studied. Since it is difficult to identify RNA-binding proteins (RBPs), very little has been known about the RBPs in S. aureus, especially those associated with sRNAs. Results Here we adopted a tRNA scaffold streptavidin aptamer based pull-down assay to identify RBPs in S. aureus. The tethered RNA was successfully captured by the streptavidin magnetic beads, and proteins binding to RNAIII were isolated and analyzed by mass spectrometry. We have identified 81 proteins, and expressed heterologously 9 of them in Escherichia coli. The binding ability of the recombinant proteins with RNAIII was further analyzed by electrophoresis mobility shift assay, and the result indicates that proteins CshA, RNase J2, Era, Hu, WalR, Pyk, and FtsZ can bind to RNAIII. Conclusions This study suggests that some proteins can bind to RNA III in S. aureus, and may be involved in RNA III function. And tRSA based pull-down assay is an effective method to search for RBPs in bacteria, which should facilitate the identification and functional study of RBPs in diverse bacterial species. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0435-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Qing Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Tian Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Changlong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Ting Xue
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
13
|
|
14
|
Yamashiro LH, Oliveira SC, Báfica A. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 2014; 16:991-7. [PMID: 25284681 DOI: 10.1016/j.micinf.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil
| | - Sérgio Costa Oliveira
- Laboratory of Immunology and Infectious Diseases, Federal University of Minas Gerais, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
15
|
The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1004183. [PMID: 24874799 PMCID: PMC4038636 DOI: 10.1371/journal.ppat.1004183] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/28/2014] [Indexed: 12/16/2022] Open
Abstract
The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins. Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA (ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been established, therefore represents a missing link between the PhoPR two-component system and the downstream functions necessary for successful infection of the host. One of the best characterized two-component systems in Mycobacterium tuberculosis is represented by the PhoPR pair, with PhoR being the transmembrane sensor kinase and PhoP playing an essential part in controlling expression of virulence-associated genes, such as those encoding the ESX-1 secretion apparatus. Previous studies showed that mutations in phoP resulted in attenuation in the mouse model of infection, thus providing the basis for the development of a novel live attenuated Mycobacterium tuberculosis vaccine carrying a deletion in phoP which is today in clinical trials. To thoroughly investigate the role of PhoP in M. tuberculosis, we undertook a systems biology approach comprising ChIP-seq and RNA-seq technologies. We demonstrated binding of PhoP to at least 35 targets on the M. tuberculosis chromosome and direct impact on expression of 30 genes, while further amplification of the signal is provided by regulators acting downstream. The strongest binding site was located between rv2395 and PE_PGRS41, where transcription of the non-coding RNA (ncRNA) Mcr7 was demonstrated. Expression of Mcr7 was found to be restricted to M. tuberculosis species and totally silenced in a phoP mutant. Genetics and proteomics approaches proved that Mcr7 controls activity of the Twin Arginine (Tat) secretion system, thus modulating secretion of the immunodominant antigen Ag85 complex and the BlaC beta-lactamase.
Collapse
|
16
|
Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 2014; 7:424-435. [PMID: 24703849 DOI: 10.1016/j.celrep.2014.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/05/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
Abstract
Produced from the pathogenicity islands of Staphylococcus aureus clinical isolates, stable SprG1 RNA encodes two peptides from a single internal reading frame. These two peptides accumulate at the membrane, and inducing their expression triggers S. aureus death. Replacement of the two initiation codons by termination signals reverses this toxicity. During growth, cis-antisense RNA SprF1 is expressed, preventing mortality by reducing SprG1 RNA and peptide levels. The peptides are secreted extracellularly, where they lyse human host erythrocytes, a process performed more efficiently by the longer peptide. The two peptides also inactivate Gram-negative and -positive bacteria, with the shorter peptide more effective against S. aureus rivals. Two peptides are secreted from an individual RNA containing two functional initiation codons. Thus, we present an unconventional type I toxin-antitoxin system expressed from a human pathogen producing two hemolytic and antibacterial peptides from a dual-coding RNA, negatively regulated by a dual-acting antisense RNA.
Collapse
|
17
|
The importance of regulatory RNAs in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2014; 21:616-26. [DOI: 10.1016/j.meegid.2013.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
18
|
Abstract
Staphylococcus aureus is a leading pathogen for animals and humans, not only being one of the most frequently isolated bacteria in hospital-associated infections but also causing diseases in the community. To coordinate the expression of its numerous virulence genes for growth and survival, S. aureus uses various signalling pathways that include two-component regulatory systems, transcription factors, and also around 250 regulatory RNAs. Biological roles have only been determined for a handful of these sRNAs, including cis, trans, and cis-trans acting RNAs, some internally encoding small, functional peptides and others possessing dual or multiple functions. Here we put forward an inventory of these fascinating sRNAs; the proteins involved in their activities; and those involved in stress response, metabolisms, and virulence.
Collapse
Affiliation(s)
- Julien Guillet
- Rennes University, Inserm U835-UpresEA2311, Pharmaceutical Biochemistry, Rennes, France
| | - Marc Hallier
- Rennes University, Inserm U835-UpresEA2311, Pharmaceutical Biochemistry, Rennes, France
| | - Brice Felden
- Rennes University, Inserm U835-UpresEA2311, Pharmaceutical Biochemistry, Rennes, France
- * E-mail:
| |
Collapse
|
19
|
Han Y, Liu L, Fang N, Yang R, Zhou D. Regulation of pathogenicity by noncoding RNAs in bacteria. Future Microbiol 2013; 8:579-91. [PMID: 23642114 DOI: 10.2217/fmb.13.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory noncoding RNAs (ncRNAs) play important roles in bacterial gene regulation, primarily at the post-transcriptional level. There are four broad categories of regulatory ncRNAs including trans-encoded ncRNAs, cis-encoded ncRNAs, RNA thermometers and riboswitches, and they can influence the translation and/or stability of mRNAs by binding to the base-pairing sites in their target transcripts. In pathogenic bacteria, numerous ncRNAs are involved in the coordinated expression of virulence determinants to facilitate the pathogenicity in a concerted manner. This review discusses the modes of action of different regulatory ncRNAs and, furthermore, exemplifies their roles in regulating bacterial pathogenicity.
Collapse
Affiliation(s)
- Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | |
Collapse
|
20
|
Lioliou E, Sharma CM, Altuvia Y, Caldelari I, Romilly C, Helfer AC, Margalit H, Romby P. In vivo mapping of RNA-RNA interactions in Staphylococcus aureus using the endoribonuclease III. Methods 2013; 63:135-43. [PMID: 23851283 DOI: 10.1016/j.ymeth.2013.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/09/2023] Open
Abstract
Ribonucleases play key roles in gene regulation and in the expression of virulence factors in Staphylococcus aureus. Among these enzymes, the double-strand specific endoribonuclease III (RNase III) is a key mediator of mRNA processing and degradation. Recently, we have defined, direct target sites for RNase III processing on a genome-wide scale in S. aureus. Our approach is based on deep sequencing of cDNA libraries obtained from RNAs isolated by in vivo co-immunoprecipitation with wild-type RNase III and two cleavage-defective mutants. The use of such catalytically inactivated enzymes, which still retain their RNA binding capacity, allows the identification of novel RNA substrates of RNase III. In this report, we will summarize the diversity of RNase III functions, discuss the advantages and the limitations of the approach, and how this strategy identifies novel mRNA targets of small non-coding RNAs in S. aureus.
Collapse
Affiliation(s)
- Efthimia Lioliou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|