1
|
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine. Molecules 2021; 26:molecules26237120. [PMID: 34885702 PMCID: PMC8659212 DOI: 10.3390/molecules26237120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Collapse
|
2
|
Cockman EM, Narayan V, Willard B, Shetty SP, Copeland PR, Driscoll DM. Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity. RNA Biol 2019; 16:1682-1696. [PMID: 31432740 PMCID: PMC6844570 DOI: 10.1080/15476286.2019.1653681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Selenoproteins are a unique class of proteins that contain the 21st amino acid, selenocysteine (Sec). Addition of Sec into a protein is achieved by recoding of the UGA stop codon. All 25 mammalian selenoprotein mRNAs possess a 3′ UTR stem-loop structure, the Selenocysteine Insertion Sequence (SECIS), which is required for Sec incorporation. It is widely believed that the SECIS is the major RNA element that controls Sec insertion, however recent findings in our lab suggest otherwise for Selenoprotein S (SelS). Here we report that the first 91 nucleotides of the SelS 3′ UTR contain a proximal stem loop (PSL) and a conserved sequence we have named the SelS Positive UGA Recoding (SPUR) element. We developed a SelS-V5/UGA surrogate assay for UGA recoding, which was validated by mass spectrometry to be an accurate measure of Sec incorporation in cells. Using this assay, we show that point mutations in the SPUR element greatly reduce recoding in the reporter; thus, the SPUR is required for readthrough of the UGA-Sec codon. In contrast, deletion of the PSL increased Sec incorporation. This effect was reversed when the PSL was replaced with other stem-loops or an unstructured sequence, suggesting that the PSL does not play an active role in Sec insertion. Additional studies revealed that the position of the SPUR relative to the UGA-Sec codon is important for optimal UGA recoding. Our identification of the SPUR element in the SelS 3′ UTR reveals a more complex regulation of Sec incorporation than previously realized.
Collapse
Affiliation(s)
- Eric M Cockman
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Vivek Narayan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sumangala P Shetty
- Department of Biochemistry and Molecular Biology, Rutgers University, New Brunswick, NJ, USA
| | - Paul R Copeland
- Department of Biochemistry and Molecular Biology, Rutgers University, New Brunswick, NJ, USA
| | - Donna M Driscoll
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
3
|
White L, Romagné F, Müller E, Erlebach E, Weihmann A, Parra G, Andrés AM, Castellano S. Genetic Adaptation to Levels of Dietary Selenium in Recent Human History. Mol Biol Evol 2015; 32:1507-18. [DOI: 10.1093/molbev/msv043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Shao J, Zhang J, Zhang Z, Jiang H, Lou X, Huang B, Foltz G, Lan Q, Huang Q, Lin B. Alternative polyadenylation in glioblastoma multiforme and changes in predicted RNA binding protein profiles. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:136-49. [PMID: 23421905 DOI: 10.1089/omi.2012.0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM.
Collapse
Affiliation(s)
- Jiaofang Shao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9:563-76. [PMID: 22614827 DOI: 10.4161/rna.20231] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The untranslated regions (UTRs) at the 3'end of mRNA transcripts contain important sequences that influence the fate of mRNA and thus proteosynthesis. In this review, we summarize the information known to date about 3'end processing, sequence characteristics including related binding proteins and the role of 3'UTRs in several selected signaling pathways to delineate their importance in the regulatory processes in mammalian cells. In addition to reviewing recent advances in the more well known aspects, such as cleavage and polyadenylation processes that influence mRNA stability and location, we concentrate on some newly emerging concepts of the role of the 3'UTR, including alternative polyadenylation sites in relation to proliferation and differentiation and the recognition of the multi-functional properties of non-coding RNAs, including miRNAs that commonly target the 3'UTR. The emerging picture is of a highly complex set of regulatory systems that include autoregulation, cooperativity and competition to fine tune proteosynthesis in context-dependent manners.
Collapse
|
6
|
Miniard AC, Middleton LM, Budiman ME, Gerber CA, Driscoll DM. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res 2010; 38:4807-20. [PMID: 20385601 PMCID: PMC2919729 DOI: 10.1093/nar/gkq247] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/20/2023] Open
Abstract
Selenium, an essential trace element, is incorporated into selenoproteins as selenocysteine (Sec), the 21st amino acid. In order to synthesize selenoproteins, a translational reprogramming event must occur since Sec is encoded by the UGA stop codon. In mammals, the recoding of UGA as Sec depends on the selenocysteine insertion sequence (SECIS) element, a stem-loop structure in the 3' untranslated region of the transcript. The SECIS acts as a platform for RNA-binding proteins, which mediate or regulate the recoding mechanism. Using UV crosslinking, we identified a 110 kDa protein, which binds with high affinity to SECIS elements from a subset of selenoprotein mRNAs. The crosslinking activity was purified by RNA affinity chromatography and identified as nucleolin by mass spectrometry analysis. In vitro binding assays showed that purified nucleolin discriminates among SECIS elements in the absence of other factors. Based on siRNA experiments, nucleolin is required for the optimal expression of certain selenoproteins. There was a good correlation between the affinity of nucleolin for a SECIS and its effect on selenoprotein expression. As selenoprotein transcript levels and localization did not change in siRNA-treated cells, our results suggest that nucleolin selectively enhances the expression of a subset of selenoproteins at the translational level.
Collapse
Affiliation(s)
- Angela C. Miniard
- Department of Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, Agricultural Technical Institute, Ohio State University, Wooster, OH 44691 and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lisa M. Middleton
- Department of Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, Agricultural Technical Institute, Ohio State University, Wooster, OH 44691 and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Michael E. Budiman
- Department of Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, Agricultural Technical Institute, Ohio State University, Wooster, OH 44691 and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Carri A. Gerber
- Department of Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, Agricultural Technical Institute, Ohio State University, Wooster, OH 44691 and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Donna M. Driscoll
- Department of Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, Agricultural Technical Institute, Ohio State University, Wooster, OH 44691 and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA, Cash A, Driscoll DM. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol Cell 2009; 35:479-89. [PMID: 19716792 DOI: 10.1016/j.molcel.2009.06.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 05/13/2009] [Accepted: 06/08/2009] [Indexed: 11/19/2022]
Abstract
The synthesis of selenoproteins requires the translational recoding of the UGA stop codon as selenocysteine. During selenium deficiency, there is a hierarchy of selenoprotein expression, with certain selenoproteins synthesized at the expense of others. The mechanism by which the limiting selenocysteine incorporation machinery is preferentially utilized to maintain the expression of essential selenoproteins has not been elucidated. Here we demonstrate that eukaryotic initiation factor 4a3 (eIF4a3) is involved in the translational control of a subset of selenoproteins. The interaction of eIF4a3 with the selenoprotein mRNA prevents the binding of SECIS binding protein 2, which is required for selenocysteine insertion, thereby inhibiting the synthesis of the selenoprotein. Furthermore, the expression of eIF4a3 is regulated in response to selenium. Based on knockdown and overexpression studies, eIF4a3 is necessary and sufficient to mediate selective translational repression in cells. Our results support a model in which eIF4a3 links selenium status with differential selenoprotein expression.
Collapse
Affiliation(s)
- Michael E Budiman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Schomburg L, Schweizer U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta Gen Subj 2009; 1790:1453-62. [PMID: 19328222 DOI: 10.1016/j.bbagen.2009.03.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 02/07/2023]
Abstract
The expression of selenoproteins is controlled on each one of the textbook steps of protein biosynthesis, i.e., during gene transcription, RNA processing, translation and posttranslational events as well as via control of the stability of the involved intermediates and final products. Selenoproteins are unique in their dependence on the trace element Se which they incorporate as the 21st proteinogenic amino acid, selenocysteine. Higher mammals have developed unique pathways to enable a fine-tuned expression of all their different selenoproteins according to developmental stage, actual needs, and current availability of the trace element. Tightly controlled and dynamic expression patterns of selenoproteins are present in different tissues. Interestingly, these patterns display some differences in male and female individuals, and can be grossly modified during disease, e.g. in cancer, inflammation or neurodegeneration. Likewise, important health issues related to the selenium status show unexpected sexual dimorphisms. Some detailed molecular insights have recently been gained on how the hierarchical Se distribution among the different tissues is achieved, how the selenoprotein biosynthesis machinery discriminates among the individual selenoprotein transcripts and how impaired selenoprotein biosynthesis machinery becomes phenotypically evident in humans. This review tries to summarize these fascinating findings and highlights some interesting and surprising sex-specific differences.
Collapse
Affiliation(s)
- Lutz Schomburg
- Institute for Experimental Endocrinology, Südring 10, CVK, Charité - Universitätsmedizin Berlin, 13353-Berlin, Germany.
| | | |
Collapse
|
9
|
Allmang C, Wurth L, Krol A. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta Gen Subj 2009; 1790:1415-23. [PMID: 19285539 DOI: 10.1016/j.bbagen.2009.03.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 01/23/2023]
Abstract
The amino acid selenocysteine (Sec) is the major biological form of the trace element selenium. Sec is co-translationally incorporated in selenoproteins. There are 25 selenoprotein genes in humans, and Sec was found in the active site of those that have been attributed a function. This review will discuss how selenocysteine is synthesized and incorporated into selenoproteins in eukaryotes. Sec biosynthesis from serine on the tRNA(Sec) requires four enzymes. Incorporation of Sec in response to an in-frame UGA codon, otherwise signaling termination of translation, is achieved by a complex recoding machinery to inform the ribosomes not to stop at this position on the mRNA. A number of the molecular partners acting in this machinery have been identified but their detailed mechanism of action has not been deciphered yet. Here we provide an overview of the literature in the field. Particularly striking is the higher than originally envisaged number of factors necessary to synthesize Sec and selenoproteins. Clearly, selenoprotein synthesis is an exciting and very active field of research.
Collapse
Affiliation(s)
- Christine Allmang
- Architecture et Réactivité de l'ARN - Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | | | | |
Collapse
|