1
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
3
|
FXR1 regulation of parvalbumin interneurons in the prefrontal cortex is critical for schizophrenia-like behaviors. Mol Psychiatry 2021; 26:6845-6867. [PMID: 33863995 PMCID: PMC8521570 DOI: 10.1038/s41380-021-01096-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Parvalbumin interneurons (PVIs) are affected in many psychiatric disorders including schizophrenia (SCZ), however the mechanism remains unclear. FXR1, a high confident risk gene for SCZ, is indispensable but its role in the brain is largely unknown. We show that deleting FXR1 from PVIs of medial prefrontal cortex (mPFC) leads to reduced PVI excitability, impaired mPFC gamma oscillation, and SCZ-like behaviors. PVI-specific translational profiling reveals that FXR1 regulates the expression of Cacna1h/Cav3.2 a T-type calcium channel implicated in autism and epilepsy. Inhibition of Cav3.2 in PVIs of mPFC phenocopies whereas elevation of Cav3.2 in PVIs of mPFC rescues behavioral deficits resulted from FXR1 deficiency. Stimulation of PVIs using a gamma oscillation-enhancing light flicker rescues behavioral abnormalities caused by FXR1 deficiency in PVIs. This work unveils the function of a newly identified SCZ risk gene in SCZ-relevant neurons and identifies a therapeutic target and a potential noninvasive treatment for psychiatric disorders.
Collapse
|
4
|
Freischmidt A, Goswami A, Limm K, Zimyanin VL, Demestre M, Glaß H, Holzmann K, Helferich AM, Brockmann SJ, Tripathi P, Yamoah A, Poser I, Oefner PJ, Böckers TM, Aronica E, Ludolph AC, Andersen PM, Hermann A, Weis J, Reinders J, Danzer KM, Weishaupt JH. A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis. Brain 2021; 144:1214-1229. [PMID: 33871026 PMCID: PMC8105042 DOI: 10.1093/brain/awab018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.
Collapse
Affiliation(s)
- Axel Freischmidt
- Department of Neurology, Ulm University, Ulm, Germany.,German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Vitaly L Zimyanin
- Department of Neurology, Technical University Dresden, Dresden, Germany.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | | | | | | | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Tobias M Böckers
- German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany.,Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Andreas Hermann
- Department of Neurology, Technical University Dresden, Dresden, Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | | | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany.,Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
MiR-315 is required for neural development and represses the expression of dFMR1 in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 525:469-476. [DOI: 10.1016/j.bbrc.2020.02.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 01/19/2023]
|
7
|
Majumder M, Palanisamy V. RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. PLoS Genet 2020; 16:e1008580. [PMID: 31940341 PMCID: PMC6986764 DOI: 10.1371/journal.pgen.1008580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/28/2020] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) associate with the primary, precursor, and mature microRNAs, which in turn control post-transcriptional gene regulation. Here, by small RNAseq, we show that RBP FXR1 controls the expression of a subset of mature miRNAs, including highly expressed miR301a-3p in oral cancer cells. We also confirm that FXR1 controls the stability of miR301a-3p. Exoribonuclease PNPT1 degrades miR301a-3p in the absence of FXR1 in oral cancer cells, and the degradation is rescued in the FXR1 and PNPT1 co-knockdown cells. In vitro, we show that PNPT1 is unable to bind and degrade the miRNA once the FXR1-miRNA complex forms. Both miR301a-3p and FXR1 cooperatively target the 3'-UTR of p21 mRNA to promote its degradation. Thus, our work illustrates the unique role of FXR1 that is critical for the stability of a subset of mature miRNAs or at least miR301a-3p to target p21 in oral cancer.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
8
|
Ramírez-Cheyne JA, Duque GA, Ayala-Zapata S, Saldarriaga-Gil W, Hagerman P, Hagerman R, Payán-Gómez C. Fragile X syndrome and connective tissue dysregulation. Clin Genet 2018; 95:262-267. [DOI: 10.1111/cge.13469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Paul Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - Randi Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario; Bogotá Colombia
| |
Collapse
|
9
|
Zhao X, Wang Y, Meng C, Fang N. FMRP regulates endothelial cell proliferation and angiogenesis via the miR-181a-CaM-CaMKII pathway. Cell Biol Int 2018; 42:1432-1444. [PMID: 30080293 DOI: 10.1002/cbin.11039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
RNA binding proteins (RBPs) and microRNAs have emerged as crucial post-transcriptional regulators of gene expression. Although the role of Fragile X mental retardation protein (FMRP) has been well studied in the brain, the function of FMRP in endothelial cells remains unknown. In our study, we showed that FMRP controlled human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis via the miR-181a-mediated calmodulin (CaM)/CaMKII pathway. The knockdown of FMRP induced miR-181a expression and contributed to endothelial cell proliferation and angiogenesis. Furthermore, we identified CaM as a downstream target of miR-181a in endothelial cells. Additionally, tumor necrosis factor-ɑ (TNF-ɑ) treatment specifically decreased the activity of the CaM/CaMKII pathway through the dephosphorylation of FMRP and upregulation of miR-181a. Finally, the overexpression of constitutively phosphorylated FMRP rescued the TNF-ɑ-impaired endothelial cell proliferation and angiogenesis by activating the CaM/CaMKII pathway and downregulating miR-181a, which suggested there was a pivotal role of FMRP in vascular integrity in response to inflammatory stimuli. Thus, our study supports a novel function and mechanism involving FMRP and the miR-181a-CaM-CaMKII pathway may be a therapeutic target for protecting against inflammation-induced vascular diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Yang Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, No.138 Yixueyuan Road, Shanghai 200032, China
| | - Chao Meng
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Ningyuan Fang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| |
Collapse
|
10
|
Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, Todd PK. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol Neurosci 2018; 11:282. [PMID: 30158855 PMCID: PMC6104480 DOI: 10.3389/fnmol.2018.00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability and autism. It results from expansion of a CGG nucleotide repeat in the 5′ untranslated region (UTR) of FMR1. Large expansions elicit repeat and promoter hyper-methylation, heterochromatin formation, FMR1 transcriptional silencing and loss of the Fragile X protein, FMRP. Efforts aimed at correcting the sequelae resultant from FMRP loss have thus far proven insufficient, perhaps because of FMRP’s pleiotropic functions. As the repeats do not disrupt the FMRP coding sequence, reactivation of endogenous FMR1 gene expression could correct the proximal event in FXS pathogenesis. Here we utilize the Clustered Regularly Interspaced Palindromic Repeats/deficient CRISPR associated protein 9 (CRISPR/dCas9) system to selectively re-activate transcription from the silenced FMR1 locus. Fusion of the transcriptional activator VP192 to dCas9 robustly enhances FMR1 transcription and increases FMRP levels when targeted directly to the CGG repeat in human cells. Using a previously uncharacterized FXS human embryonic stem cell (hESC) line which acquires transcriptional silencing with serial passaging, we achieved locus-specific transcriptional re-activation of FMR1 messenger RNA (mRNA) expression despite promoter and repeat methylation. However, these changes at the transcript level were not coupled with a significant elevation in FMRP protein expression in FXS cells. These studies demonstrate that directing a transcriptional activator to CGG repeats is sufficient to selectively reactivate FMR1 mRNA expression in Fragile X patient stem cells.
Collapse
Affiliation(s)
- Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Gary D Smith
- Departments of Obstetrics/Gynecology, Physiology, and Urology, University of Michigan, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Oldenburg A, Briand N, Sørensen AL, Cahyani I, Shah A, Moskaug JØ, Collas P. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J Cell Biol 2017; 216:2731-2743. [PMID: 28751304 PMCID: PMC5584164 DOI: 10.1083/jcb.201701043] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Lamin A/C (LMNA) gene-encoding nuclear LMNA cause laminopathies, which include partial lipodystrophies associated with metabolic syndromes. The lipodystrophy-associated LMNA p.R482W mutation is known to impair adipogenic differentiation, but the mechanisms involved are unclear. We show in this study that the lamin A p.R482W hot spot mutation prevents adipogenic gene expression by epigenetically deregulating long-range enhancers of the anti-adipogenic MIR335 microRNA gene in human adipocyte progenitor cells. The R482W mutation results in a loss of function of differentiation-dependent lamin A binding to the MIR335 locus. This impairs H3K27 methylation and instead favors H3K27 acetylation on MIR335 enhancers. The lamin A mutation further promotes spatial clustering of MIR335 enhancer and promoter elements along with overexpression of the MIR355 gene after adipogenic induction. Our results link a laminopathy-causing lamin A mutation to an unsuspected deregulation of chromatin states and spatial conformation of an miRNA locus critical for adipose progenitor cell fate.
Collapse
Affiliation(s)
- Anja Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anita L Sørensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Inswasti Cahyani
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan Øivind Moskaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway .,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Wang B, Pan L, Wei M, Wang Q, Liu WW, Wang N, Jiang XY, Zhang X, Bao L. FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1. Cell Rep 2015; 13:2794-807. [DOI: 10.1016/j.celrep.2015.11.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/04/2023] Open
|
14
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
15
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
16
|
Testosterone down regulates the expression of Fmr-1 gene in the cerebral cortex of gonadectomized old male mice. Biogerontology 2014; 15:503-15. [DOI: 10.1007/s10522-014-9521-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
|
17
|
Oldenburg AR, Delbarre E, Thiede B, Vigouroux C, Collas P. Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Hum Mol Genet 2013; 23:1151-62. [PMID: 24108105 DOI: 10.1093/hmg/ddt509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear lamina is implicated in the regulation of various nuclear functions. Several laminopathy-causing mutations in the LMNA gene, notably the p.R482W substitution linked to familial partial lipodystrophy type 2 (FPLD2), are clustered in the immunoglobulin fold of lamin A. We report a functional association between lamin A and fragile X-related protein 1 (FXR1P), a protein of the fragile X-related family involved in fragile X syndrome. Searching for proteins differentially interacting with the immunoglobulin fold of wild-type and R482W mutant lamin A, we identify FXR1P as a novel component of the lamin A protein network. The p.R482W mutation abrogates interaction of FXR1P with lamin A. Fibroblasts from FPLD2 patients display elevated levels of FXR1P and delocalized FXR1P. In human adipocyte progenitors, deregulation of lamin A expression leads to FXR1P up-regulation, impairment of adipogenic differentiation and induction of myogenin expression. FXR1P overexpression also stimulates a myogenic gene expression program in these cells. Our results demonstrate a cross-talk between proteins hitherto implicated in two distinct mesodermal pathologies. We propose a model where the FPLD2 lamin A p.R482W mutation elicits, through up-regulation of FXR1P, a remodeling of an adipogenic differentiation program into a myogenic program.
Collapse
Affiliation(s)
- Anja R Oldenburg
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, Oslo 0317, Norway
| | | | | | | | | |
Collapse
|
18
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
19
|
Gareau C, Houssin E, Martel D, Coudert L, Mellaoui S, Huot ME, Laprise P, Mazroui R. Characterization of fragile X mental retardation protein recruitment and dynamics in Drosophila stress granules. PLoS One 2013; 8:e55342. [PMID: 23408971 PMCID: PMC3567066 DOI: 10.1371/journal.pone.0055342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
The RNA-binding protein Fragile X Mental Retardation (FMRP) is an evolutionarily conserved protein that is particularly abundant in the brain due to its high expression in neurons. FMRP deficiency causes fragile X mental retardation syndrome. In neurons, FMRP controls the translation of target mRNAs in part by promoting dynamic transport in and out neuronal RNA granules. We and others have previously shown that upon stress, mammalian FMRP dissociates from translating polysomes to localize into neuronal-like granules termed stress granules (SG). This localization of FMRP in SG is conserved in Drosophila. Whether FMRP plays a key role in SG formation, how FMRP is recruited into SG, and whether its association with SG is dynamic are currently unknown. In contrast with mammalian FMRP, which has two paralog proteins, Drosophila FMR1 (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple model, we assessed the role of dFMRP in SG formation and defined the determinants required for its recruitment in SG as well as its dynamics in SG. We show that dFMRP is dispensable for SG formation in vitro and ex vivo. FRAP experiments showed that dFMRP shuttles in and out SG. The shuttling activity of dFMRP is mediated by a protein-protein interaction domain located at the N-terminus of the protein. This domain is, however, dispensable for the localization of dFMRP in SG. This localization of dFMRP in SG requires the KH and RGG motifs which are known to mediate RNA binding, as well as the C-terminal glutamine/asparagine rich domain. Our studies thus suggest that the mechanisms controlling the recruitment of FMRP into SG and those that promote its shuttling between granules and the cytosol are uncoupled. To our knowledge, this is the first demonstration of the regulated shuttling activity of a SG component between RNA granules and the cytosol.
Collapse
Affiliation(s)
- Cristina Gareau
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Elise Houssin
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - David Martel
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Laetitia Coudert
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Samia Mellaoui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Marc-Etienne Huot
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Patrick Laprise
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, Centre de recherche le CHU de Quebec, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:647-70. [PMID: 24014452 DOI: 10.1002/wdev.108] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
21
|
Gareau C, Martel D, Coudert L, Mellaoui S, Mazroui R. Characterization of Fragile X Mental Retardation Protein granules formation and dynamics in Drosophila. Biol Open 2012; 2:68-81. [PMID: 23336078 PMCID: PMC3545270 DOI: 10.1242/bio.20123012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/03/2012] [Indexed: 01/30/2023] Open
Abstract
FMRP is an evolutionarily conserved protein that is highly expressed in neurons and its deficiency causes fragile X mental retardation syndrome. FMRP controls the translation of target mRNAs in part by promoting their dynamic transport in neuronal RNA granules. We have previously shown that high expression of mammalian FMRP induces formation of granules termed FMRP granules. These RNA granules are reminiscent of neuronal granules, of stress granules, as well as of the recently described in vitro-assembled granules. In contrast with mammalian FMRP, which has two paralog proteins, Drosophila FMRP (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple organism, we investigated formation and dynamics of FMRP granules. We found that increased expression of dFMRP in Drosophila cells induces the formation of dynamic dFMRP RNA granules. Mutagenesis studies identified the N-terminal protein–protein domain of dFMRP as a key determinant for FMRP granules formation. The RGG RNA binding motif of dFMRP is dispensable for dFMRP granules formation since its deletion does not prevent formation of those granules. Deletion of the RGG motif reduced, however, dFMRP trafficking between FMRP granules and the cytosol. Similarly, deletion of a large part of the KH RNA binding motif of dFMRP had no effect on formation of dFMRP-granules, but diminished the shuttling activity of dFMRP. Our results thus suggest that the mechanisms controlling formation of RNA granules and those promoting their dynamics are uncoupled. This study opens new avenues to further elucidate the molecular mechanisms controlling FMRP trafficking with its associated mRNAs in and out of RNA granules.
Collapse
Affiliation(s)
- Cristina Gareau
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Laval University, CHUQ Research Center/St-François d'Assise Research Center , Quebec, QC G1L 3L5 , Canada
| | | | | | | | | |
Collapse
|
22
|
Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012; 13:528-41. [PMID: 22814587 DOI: 10.1038/nrn3234] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel classes of small and long non-coding RNAs (ncRNAs) are being characterized at a rapid pace, driven by recent paradigm shifts in our understanding of genomic architecture, regulation and transcriptional output, as well as by innovations in sequencing technologies and computational and systems biology. These ncRNAs can interact with DNA, RNA and protein molecules; engage in diverse structural, functional and regulatory activities; and have roles in nuclear organization and transcriptional, post-transcriptional and epigenetic processes. This expanding inventory of ncRNAs is implicated in mediating a broad spectrum of processes including brain evolution, development, synaptic plasticity and disease pathogenesis.
Collapse
|
23
|
Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci 2012; 35:325-34. [PMID: 22436491 PMCID: PMC3565236 DOI: 10.1016/j.tins.2012.01.004] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA transcripts expressed throughout the brain that can regulate neuronal gene expression at the post-transcriptional level. Here, we provide an overview of the role for miRNAs in brain development and function, and review evidence suggesting that dysfunction in miRNA signaling contributes to neurodevelopment disorders such as Rett and fragile X syndromes, as well as complex behavioral disorders including schizophrenia, depression and drug addiction. A better understanding of how miRNAs influence the development of neuropsychiatric disorders may reveal fundamental insights into the causes of these devastating illnesses and offer novel targets for therapeutic development.
Collapse
Affiliation(s)
- Heh-In Im
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute - Scripps Florida, Jupiter, FL 33458, USA
| | | |
Collapse
|
24
|
Kindler S, Kreienkamp HJ. The role of the postsynaptic density in the pathology of the fragile X syndrome. Results Probl Cell Differ 2012; 54:61-80. [PMID: 22009348 DOI: 10.1007/978-3-642-21649-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein repertoire of excitatory synapses controls dendritic spine morphology, synaptic plasticity and higher brain functions. In brain neurons, the RNA-associated fragile X mental retardation protein (FMRP) binds in vivo to various transcripts encoding key postsynaptic components and may thereby substantially regulate the molecular composition of dendritic spines. In agreement with this notion functional loss of FMRP in patients affected by the fragile X syndrome (FXS) causes cognitive impairment. Here we address our current understanding of the functional role of individual postsynaptic proteins. We discuss how FMRP controls the abundance of select proteins at postsynaptic sites, which signaling pathways regulate the local activity of FMRP at synapses, and how altered levels of postsynaptic proteins may contribute to FXS pathology.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
25
|
Evans TL, Blice-Baum AC, Mihailescu MR. Analysis of the Fragile X mental retardation protein isoforms 1, 2 and 3 interactions with the G-quadruplex forming semaphorin 3F mRNA. ACTA ACUST UNITED AC 2012; 8:642-9. [DOI: 10.1039/c1mb05322a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Dendritic mRNA targeting and translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:285-305. [PMID: 22351061 DOI: 10.1007/978-3-7091-0932-8_13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.
Collapse
|
27
|
Lauzière V, Lessard M, Meunier AJ, McCoy M, Bergeron LJ, Corbin F. Unusual subcellular confinement of the fragile X mental retardation protein (FMRP) in circulating human platelets: complete polyribosome dissociation. Biochimie 2011; 94:1069-73. [PMID: 22210492 DOI: 10.1016/j.biochi.2011.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022]
Abstract
FMRP, a RNA-binding protein, was shown in association with polyribosomes in every cell types studied so far, suggesting a ubiquitous role as a translational regulator. Platelets are known for their limited protein synthesis potential. However, current investigations put forward that RNA metabolism is more developed than previously thought. Unexpectedly, our results provide evidence that FMRP, in platelets, is not constitutively associated with heavy particles, such as polyribosomes, and possesses a sedimentation coefficient of less than 10S contrasting with values of 150 to 500S as reported in other cell types. In summary, this report brings to light platelets as a simple human biological system to delineate novel FMRP functions as well as strengthening our comprehension of the pathophysiology of the fragile X syndrome which results from the absence of FMRP.
Collapse
Affiliation(s)
- Véronique Lauzière
- Biochemistry Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Witkos TM, Koscianska E, Krzyzosiak WJ. Practical Aspects of microRNA Target Prediction. Curr Mol Med 2011; 11:93-109. [PMID: 21342132 PMCID: PMC3182075 DOI: 10.2174/156652411794859250] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/27/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1).
Collapse
Affiliation(s)
- T M Witkos
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str. 61-704 Poznan, Poland
| | | | | |
Collapse
|
29
|
Qureshi IA, Mehler MF. Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 2011; 17:337-46. [PMID: 21411369 PMCID: PMC3115489 DOI: 10.1016/j.molmed.2011.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. In this review, we discuss the emergence of many novel, diverse and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses and aging, and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases, as well as those that manifest throughout the lifespan.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
30
|
FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord 2011; 3:211-24. [PMID: 21617890 PMCID: PMC3261276 DOI: 10.1007/s11689-011-9084-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/09/2011] [Indexed: 11/10/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.
Collapse
|
31
|
Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacol Ther 2011; 130:26-37. [PMID: 21256154 PMCID: PMC3043141 DOI: 10.1016/j.pharmthera.2011.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 12/18/2022]
Abstract
MicroRNAs are members of the non-protein-coding family of RNAs. They serve as regulators of gene expression by modulating the translation and/or stability of messenger RNA targets. The discovery of microRNAs has revolutionized the field of cell biology, and has permanently altered the prevailing view of a linear relationship between gene and protein expression. The increased complexity of gene regulation is both exciting and daunting, as emerging evidence supports a pervasive role for microRNAs in virtually every cellular process. This review briefly describes microRNA processing and formation of RNA-induced silencing complexes, with a focus on the role of RNA binding proteins in this process. We also discuss mechanisms for microRNA-mediated regulation of translation, particularly in dendritic spine formation and function, and the role of microRNAs in synaptic plasticity. We then discuss the evidence for altered microRNA function in cognitive brain disorders, and the effect of gene mutations revealed by single nucleotide polymorphism analysis on altered microRNA function and human disease. Further, we present evidence that altered microRNA expression in circulating fluids such as plasma/serum can correlate with, and serve as, novel diagnostic biomarkers of human disease.
Collapse
Affiliation(s)
- Stephanie Ceman
- University of Illinois, Department of Cell & Developmental Biology, Urbana IL 61801, United States
| | - Julie Saugstad
- Legacy Research Institute, RS Dow Neurobiology Labs, Portland, OR 97232, United States
| |
Collapse
|
32
|
Jeon SJ, Seo JE, Yang SI, Choi JW, Wells D, Shin CY, Ko KH. Cellular stress-induced up-regulation of FMRP promotes cell survival by modulating PI3K-Akt phosphorylation cascades. J Biomed Sci 2011; 18:17. [PMID: 21314987 PMCID: PMC3045291 DOI: 10.1186/1423-0127-18-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/13/2011] [Indexed: 12/26/2022] Open
Abstract
Background Fragile X syndrome (FXS), the most commonly inherited mental retardation and single gene cause of autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental retardation protein (FMRP) is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals, understanding the functions of FMRP in cellular context would provide better insights into the role of this interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether FMRP could play a role in cell survival. Methods Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated FMRP expression (silencing or enhancing) by using molecular biotechnological methods such as small hairpin RNA virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was analyzed by Western blot, RT-PCR and immunocytochemistry. Results An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell survival in etoposide-treated HeLa cells. Conclusions Taken together, these results suggest that FMRP expression is an essential part of cellular survival mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal pathways.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Long AA, Mahapatra CT, Woodruff EA, Rohrbough J, Leung HT, Shino S, An L, Doerge RW, Metzstein MM, Pak WL, Broadie K. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy. J Cell Sci 2010; 123:3303-15. [PMID: 20826458 DOI: 10.1242/jcs.069468] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.
Collapse
Affiliation(s)
- A Ashleigh Long
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:504-23. [PMID: 20522007 PMCID: PMC2992341 DOI: 10.2174/187152710791556104] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
Human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people. The majority of the diseases are associated with pathogenic oligomers from misfolded proteins, eventually causing the formation of aggregates and the progressive loss of neurons in the brain and nervous system. Several of these proteinopathies are sporadic and the cause of pathogenesis remains elusive. Heritable forms are associated with genetic defects, suggesting that the affected protein is causally related to disease formation and/or progression. The limitations of human genetics, however, make it necessary to use model systems to analyse affected genes and pathways in more detail. During the last two decades, research using the genetically amenable fruitfly has established Drosophila melanogaster as a valuable model system in the study of human neurodegeneration. These studies offer reliable models for Alzheimer's, Parkinson's, and motor neuron diseases, as well as models for trinucleotide repeat expansion diseases, including ataxias and Huntington's disease. As a result of these studies, several signalling pathways including phosphatidylinositol 3-kinase (PI3K)/Akt and target of rapamycin (TOR), c-Jun N-terminal kinase (JNK) and bone morphogenetic protein (BMP) signalling, have been shown to be deregulated in models of proteinopathies, suggesting that two or more initiating events may trigger disease formation in an age-related manner. Moreover, these studies also demonstrate that the fruitfly can be used to screen chemical compounds for their potential to prevent or ameliorate the disease, which in turn can directly guide clinical research and the development of novel therapeutic strategies for the treatment of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Hirth
- King's College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, Department of Neuroscience, London, UK.
| |
Collapse
|
35
|
Qureshi IA, Mehler MF. Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis 2010; 39:53-60. [PMID: 20188170 PMCID: PMC2874104 DOI: 10.1016/j.nbd.2010.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/10/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022] Open
Abstract
The rapidly emerging science of epigenetics and epigenomic medicine promises to reveal novel insights into the susceptibility to and the onset and progression of epileptic disorders. Epigenetic regulatory mechanisms are now implicated in orchestrating aspects of neural development (e.g., cell fate specification and maturation), homeostasis and stress responses (e.g., immediate early gene transcription), and neural network function (e.g., excitation-inhibition coupling and activity-dependent plasticity). These same neurobiological processes are responsible for determining the heterogeneous features of complex epileptic disease states. Thus, we highlight recent evidence that is beginning to elucidate the specific roles played by epigenetic mechanisms, including DNA methylation, histone code modifications and chromatin remodeling, noncoding RNAs and RNA editing, in human epilepsy syndromes and in the process of epileptogenesis. The highly integrated layers of the epigenome are responsible for the cell type specific and exquisitely environmentally responsive deployment of genes and functional gene networks that underlie the molecular pathophysiology of epilepsy and its associated comorbidities, including but not limited to neurotransmitter receptors (e.g., GluR2, GLRA2, and GLRA3), growth factors (e.g., BDNF), extracellular matrix proteins (e.g., RELN), and diverse transcriptional regulators (e.g., CREB, c-fos, and c-jun). These important observations suggest that future epigenetic studies are necessary to better understand, classify, prevent, and treat epileptic disorders.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
36
|
Tan H, Li H, Jin P. RNA-mediated pathogenesis in fragile X-associated disorders. Neurosci Lett 2009; 466:103-8. [PMID: 19631721 PMCID: PMC2767401 DOI: 10.1016/j.neulet.2009.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/16/2022]
Abstract
Noncoding RNAs play important and diverse regulatory roles throughout the genome and make major contributions to disease pathogenesis. The FMR1 gene is involved in three different syndromes: fragile X syndrome (FXS), primary ovarian insufficiency (POI), and fragile X-associated tremor/ataxia syndrome (FXTAS) in older patients. Noncoding RNAs have been implicated in the molecular pathogenesis of both FXS and FXTAS. Here we will review our current knowledge on the role(s) of noncoding RNAs in FXS and FXTAS, particularly the role of the microRNA pathway in FXS and the role of noncoding riboCGG (rCGG) repeat in FXTAS.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
37
|
MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009; 2009:654346. [PMID: 19841678 PMCID: PMC2762243 DOI: 10.1155/2009/654346] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/11/2009] [Accepted: 07/20/2009] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have rapidly emerged as biologically important mediators of posttranscriptional and epigenetic regulation in both plants and animals. miRNAs function through a variety of mechanisms including mRNA degradation and translational repression; additionally, miRNAs may guide gene expression by serving as transcription factors. miRNAs are highly expressed in human brain. Tissue and cell type-specific enrichments of certain miRNAs within the nervous system argue for a biological significance during neurodevelopmental stages. On the other hand, a large number of studies have reported links between alterations of miRNA homeostasis and pathologic conditions such as cancer, heart diseases, and neurodegeneration. Thus, profiles of distinct or aberrant miRNA signatures have most recently surged as one of the most fascinating interests in current biology. Here, the most recent insights into the involvement of miRNAs in the biology of the nervous system and the occurrence of neuropathological disorders are reviewed and discussed.
Collapse
|