1
|
Lejars M, Hajnsdorf E. Bacterial RNase III: Targets and physiology. Biochimie 2024; 217:54-65. [PMID: 37482092 DOI: 10.1016/j.biochi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.
Collapse
Affiliation(s)
- Maxence Lejars
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
2
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
3
|
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms 2022; 10:microorganisms10040699. [PMID: 35456749 PMCID: PMC9032294 DOI: 10.3390/microorganisms10040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.
Collapse
|
4
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
5
|
Yilmaz C, Rangarajan AA, Schnetz K. The transcription regulator and c-di-GMP phosphodiesterase PdeL represses motility in Escherichia coli. J Bacteriol 2020; 203:JB.00427-20. [PMID: 33318048 PMCID: PMC8095459 DOI: 10.1128/jb.00427-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
PdeL is a transcription regulator and catalytically active c-di-GMP phosphodiesterases (PDE) in Escherichia coli PdeL has been shown to be a transcription autoregulator, while no other target genes have been identified so far. Here, we show that PdeL represses transcription of the flagella class II operon, fliFGHIJK, and activates sslE encoding an extracellular anchored metalloprotease, among additional loci. DNA-binding studies and expression analyses using plasmidic reporters suggest that regulation of the fliF and sslE promoters by PdeL is direct. Transcription repression of the fliFGHIJK operon, encoding protein required for assembly of the flagellar basal body, results in inhibition of motility on soft agar plates and reduction of flagella assembly, as shown by fluorescence staining of the flagella hook protein FlgE. PdeL-mediated repression of motility is independent of its phosphodiesterase activity. Thus, in motility control the transcription regulator function of PdeL reducing the number of assembled flagella is apparently epistatic to its phosphodiesterase function, which can indirectly promote the activity of the flagellar motor by lowering the c-di-GMP concentration.Bacteria adopt different lifestyles depending on their environment and physiological condition. In Escherichia coli and other enteric bacteria the transition between the motile and the sessile state is controlled at multiple levels from the regulation of gene expression to the modulation of various processes by the second messenger c-di-GMP as signaling molecule. The significance of our research is in identifying PdeL, a protein of dual function that hydrolyzes c-di-GMP and that regulates transcription of genes, as a repressor of Flagella gene expression and an inhibitor of motility, which adds an additional regulatory switch to the control of motility.
Collapse
Affiliation(s)
- Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | | | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
6
|
The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Sci Rep 2019; 9:17257. [PMID: 31754158 PMCID: PMC6872547 DOI: 10.1038/s41598-019-53883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Rapid modulation of RNA function by endoribonucleases during physiological responses to environmental changes is known to be an effective bacterial biochemical adaptation. We report a molecular mechanism underlying the regulation of enolase (eno) expression by two endoribonucleases, RNase G and RNase III, the expression levels of which are modulated by oxygen availability in Escherichia coli. Analyses of transcriptional eno-cat fusion constructs strongly suggested the existence of cis-acting elements in the eno 5' untranslated region that respond to RNase III and RNase G cellular concentrations. Primer extension and S1 nuclease mapping analyses of eno mRNA in vivo identified three eno mRNA transcripts that are generated in a manner dependent on RNase III expression, one of which was found to accumulate in rng-deleted cells. Moreover, our data suggested that RNase III-mediated cleavage of primary eno mRNA transcripts enhanced Eno protein production, a process that involved putative cis-antisense RNA. We found that decreased RNase G protein abundance coincided with enhanced RNase III expression in E. coli grown anaerobically, leading to enhanced eno expression. Thereby, this posttranscriptional up-regulation of eno expression helps E. coli cells adjust their physiological reactions to oxygen-deficient metabolic modes. Our results revealed a molecular network of coordinated endoribonuclease activity that post-transcriptionally modulates the expression of Eno, a key enzyme in glycolysis.
Collapse
|
7
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
8
|
RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA. mBio 2017; 8:mBio.00128-17. [PMID: 28351917 PMCID: PMC5371410 DOI: 10.1128/mbio.00128-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK, and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is needed to make predictions of transcript half-life and to design synthetic transcripts with optimal stability. RNase III does not have a conserved target sequence but instead recognizes RNA secondary structure. Prior to this study, only a few RNase III target sites in E. coli were known, so we used RNA sequencing to provide a more comprehensive list of cleavage sites and to examine the impact of RNase III on transcript degradation. With this added information on how RNase III participates in transcript regulation and recycling, a more complete picture of RNA turnover can be developed for E. coli. Similar approaches could be used to augment our understanding of RNA turnover in other bacteria.
Collapse
|
9
|
Abstract
Bacterial cells respond to changes in the environment by adjusting their physiological reactions. In cascades of cellular responses to stresses of various origins, rapid modulation of RNA function is known to be an effective biochemical adaptation. Among many factors affecting RNA function, RNase III, a member of the phylogenetically highly conserved endoribonuclease III family, plays a key role in posttranscriptional regulatory pathways in Escherichia coli. In this review, we provide an overview of the factors affecting RNase III activity in E. coli.
Collapse
|
10
|
Khodr A, Fairweather V, Bouffartigues E, Rimsky S. IHF is a trans-acting factor implicated in the regulation of the proU P2 promoter. FEMS Microbiol Lett 2015; 362:1-6. [DOI: 10.1093/femsle/fnu049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. J Bacteriol 2015; 197:1297-305. [PMID: 25645556 DOI: 10.1128/jb.02460-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The enzymatic activity of Escherichia coli endo-RNase III determines the stability of a subgroup of mRNA species, including bdm, betT, and proU, whose protein products are associated with the cellular response to osmotic stress. Here, we report that the stability of proP mRNA, which encodes a transporter of osmoprotectants, is controlled by RNase III in response to osmotic stress. We observed that steady-state levels of proP mRNA and ProP protein are inversely correlated with cellular RNase III activity and, in turn, affect the proline uptake capacity of the cell. In vitro and in vivo analyses of proP mRNA revealed RNase III cleavage sites in a stem-loop within the 5' untranslated region present only in proP mRNA species synthesized from the osmoregulated P1 promoter. Introduction of nucleotide substitutions in the cleavage site identified inhibited the ribonucleolytic activity of RNase III on proP mRNA, increasing the steady-state levels and half-life of the mRNA. In addition, decreased RNase III activity coincided with a significant increase in both the half-life and abundance of proP mRNA under hyperosmotic stress conditions. Analysis of the RNA bound to RNase III via in vivo cross-linking and immunoprecipitation indicated that this phenomenon is related to the decreased RNA binding capacity of RNase III. Our findings suggest the existence of an RNase III-mediated osmoregulatory network that rapidly balances the expression levels of factors associated with the cellular response to osmotic stress in E. coli. IMPORTANCE Our results demonstrate that RNase III activity on proP mRNA degradation is downregulated in Escherichia coli cells under osmotic stress. In addition, we show that the downregulation of RNase III activity is associated with decreased RNA binding capacity of RNase III under hyperosmotic conditions. In particular, our findings demonstrate a link between osmotic stress and RNase III activity, underscoring the growing importance of posttranscriptional regulation in modulating rapid physiological adjustment to environmental changes.
Collapse
|
12
|
Sim M, Lim B, Sim SH, Kim D, Jung E, Lee Y, Lee K. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS One 2014; 9:e100520. [PMID: 24956275 PMCID: PMC4067347 DOI: 10.1371/journal.pone.0100520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
While identifying genes regulated by ribonuclease III (RNase III) in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.
Collapse
Affiliation(s)
- Minji Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Boram Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Se-Hoon Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Euihan Jung
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Song W, Kim YH, Sim SH, Hwang S, Lee JH, Lee Y, Bae J, Hwang J, Lee K. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli. Nucleic Acids Res 2014; 42:4669-81. [PMID: 24489121 PMCID: PMC3985665 DOI: 10.1093/nar/gku093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3–8 extra nucleotides at the 5’ terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Wooseok Song
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea, Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea, Department of Microbiology, Catholic University of Daegu, School of Medicine, Nam-Gu, Daegu 705-718, Republic of Korea, Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea, Department of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea and Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:31-48. [PMID: 24124076 PMCID: PMC3867540 DOI: 10.1002/wrna.1195] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022]
Abstract
Double-stranded(ds) RNA has diverse roles in gene expression and regulation, host defense, and genome surveillance in bacterial and eukaryotic cells. A central aspect of dsRNA function is its selective recognition and cleavage by members of the ribonuclease III (RNase III) family of divalent-metal-ion-dependent phosphodiesterases. The processing of dsRNA by RNase III family members is an essential step in the maturation and decay of coding and noncoding RNAs, including miRNAs and siRNAs. RNase III, as first purified from Escherichia coli, has served as a biochemically well-characterized prototype, and other bacterial orthologs provided the first structural information. RNase III family members share a unique fold (RNase III domain) that can dimerize to form a structure that binds dsRNA and cleaves phosphodiesters on each strand, providing the characteristic 2 nt, 3′-overhang product ends. Ongoing studies are uncovering the functions of additional domains, including, inter alia, the dsRNA-binding and PAZ domains that cooperate with the RNase III domain to select target sites, regulate activity, confer processivity, and support the recognition of structurally diverse substrates. RNase III enzymes function in multicomponent assemblies that are regulated by diverse inputs, and at least one RNase III-related polypeptide can function as a noncatalytic, dsRNA-binding protein. This review summarizes the current knowledge of the mechanisms of catalysis and target site selection of RNase III family members, and also addresses less well understood aspects of these enzymes and their interactions with dsRNA. WIREs RNA 2014, 5:31–48. doi: 10.1002/wrna.1195
Collapse
Affiliation(s)
- Allen W Nicholson
- Department of Biology and Chemistry, College of Science & Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Abstract
In Escherichia coli, the corA gene encodes a transporter that mediates the influx of Co(2+), Mg(2+), and Ni(2+) into the cell. During the course of experiments aimed at identifying RNase III-dependent genes in E. coli, we observed that steady-state levels of corA mRNA as well as the degree of cobalt influx into the cell were dependent on cellular concentrations of RNase III. In addition, changes in corA expression levels by different cellular concentrations of RNase III were closely correlated with degrees of resistance of E. coli cells to Co(2+) and Ni(2+). In vitro and in vivo cleavage analyses of corA mRNA identified RNase III cleavage sites in the 5'-untranslated region of the corA mRNA. The introduction of nucleotide substitutions at the identified RNase III cleavage sites abolished RNase III cleavage activity on corA mRNA and resulted in prolonged half-lives of the mRNA, which demonstrates that RNase III cleavage constitutes a rate-determining step for corA mRNA degradation. These findings reveal an RNase III-mediated regulatory pathway that functions to modulate corA expression and, in turn, the influx of metal ions transported by CorA in E. coli.
Collapse
|