1
|
The Anti-Inflammatory Protein TNIP1 Is Intrinsically Disordered with Structural Flexibility Contributed by Its AHD1-UBAN Domain. Biomolecules 2020; 10:biom10111531. [PMID: 33182596 PMCID: PMC7697625 DOI: 10.3390/biom10111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
TNFAIP3 interacting protein 1 (TNIP1) interacts with numerous non-related cellular, viral, and bacterial proteins. TNIP1 is also linked with multiple chronic inflammatory disorders on the gene and protein levels, through numerous single-nucleotide polymorphisms and reduced protein amounts. Despite the importance of TNIP1 function, there is limited investigation as to how its conformation may impact its apparent multiple roles. Hub proteins like TNIP1 are often intrinsically disordered proteins. Our initial in silico assessments suggested TNIP1 is natively unstructured, featuring numerous potentials intrinsically disordered regions, including the ABIN homology domain 1-ubiquitin binding domain in ABIN proteins and NEMO (AHD1-UBAN) domain associated with its anti-inflammatory function. Using multiple biophysical approaches, we demonstrate the structural flexibility of full-length TNIP1 and the AHD1-UBAN domain. We present evidence the AHD1-UBAN domain exists primarily as a pre-molten globule with limited secondary structure in solution. Data presented here suggest the previously described coiled-coil conformation of the crystallized UBAN-only region may represent just one of possibly multiple states for the AHD1-UBAN domain in solution. These data also characterize the AHD1-UBAN domain in solution as mostly monomeric with potential to undergo oligomerization under specific environmental conditions (e.g., binding partner availability, pH-dependence). This proposed intrinsic disorder across TNIP1 and within the AHD1-UBAN region is likely to impact TNIP1 function and interaction with its multiple partners.
Collapse
|
2
|
Sigalov AB. Letter to the Editor: No folding upon binding of intrinsically disordered proteins: Still interesting but not unique and novel. A commentary on “A novel mode of interaction between intrinsically disordered proteins. by Hibino, E. and Hoshino, M., Biophysics and Physicobiology 17, 86–93 (2020). DOI: 10.2142/biophysico.BSJ-2020012”. Biophys Physicobiol 2020; 17:156-158. [PMID: 33447498 PMCID: PMC7781792 DOI: 10.2142/biophysico.bsj-2020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/01/2022] Open
|
3
|
Appadurai R, Uversky VN, Srivastava A. The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. J Membr Biol 2019; 252:273-292. [PMID: 31139867 PMCID: PMC7617717 DOI: 10.1007/s00232-019-00069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The intrinsically disordered proteins and protein regions (IDPs/IDPRs) do not have unique structures, but are known to be functionally important and their conformational flexibility and structural plasticity have engendered a paradigmatic shift in the classical sequence-structure-function maxim. Fundamental understanding in this field has significantly evolved since the discovery of this class of proteins about 25 years ago. Though the IDPRs of transmembrane proteins (TMP-IDPRs) comply with the broad definition of typical IDPs and IDPRs found in water-soluble globular proteins, much less is explored and known about them. In this review, we assimilate the key emerging biophysical principles from the limited studies on TMP-IDPRs and provide several context-specific biological examples to highlight the ubiquitous nature of TMP-IDPRs and their functional importance in cellular functions. Besides providing a spectrum of insights from sequence to structural disorder and functions, we also review the challenges and methodological advances in studying the structure-function relationship of TMP-IDPRs. We also lay stress upon the importance of an integrative framework, where ensemble-averaged (and mostly low-resolution) data from multiple experiments can be faithfully integrated with modelling techniques such as advanced sampling, coarse-graining, and free energy minimization methods for a high-fidelity characterization of TMP-IDPRs. We close the review by providing futuristic perspective with suggestions on how we could use the ideas and methods from the exciting field of protein engineering in conjunction with integrative modelling framework to advance the IDPR field and harness the sequence-disorder-function paradigm towards functional design of proteins.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290
| | - Anand Srivastava
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
4
|
Structural biology of intrinsically disordered proteins: Revisiting unsolved mysteries. Biochimie 2016; 125:112-8. [PMID: 27004461 DOI: 10.1016/j.biochi.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 01/30/2023]
Abstract
The emergence of intrinsically disordered proteins (IDPs) has challenged the classical protein structure-function paradigm by introducing a new paradigm of "coupled binding and folding". This paradigm suggests that IDPs fold upon binding to their partners. Further studies, however, revealed a novel and previously unrecognized phenomenon of "uncoupled binding and folding" suggesting that IDPs do not necessarily fold upon interaction with their lipid and protein partners. The complex and often unusual biophysics of IDPs makes structural characterization of these proteins and their complexes not only challenging but often resulting in opposite conclusions. For this reason, some crucial questions in this field remain unsolved for well over a decade. Considering an important role of IDPs in cellular regulation, signaling and control in health and disease, more efforts are needed to solve these mysteries. Here, I focus on two long-standing contradictions in the literature concerning dimerization and membrane-binding activities of IDPs. Molecular explanation of these discrepancies is provided. I also demonstrate how resolution of these critical issues in the field of IDPs results in our expanded understanding of cell function and has multiple applications in biology and medicine.
Collapse
|
5
|
Tusnády GE, Dobson L, Tompa P. Disordered regions in transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2839-48. [PMID: 26275590 DOI: 10.1016/j.bbamem.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022]
Abstract
The functions of transmembrane proteins in living cells are widespread; they range from various transport processes to energy production, from cell-cell adhesion to communication. Structurally, they are highly ordered in their membrane-spanning regions, but may contain disordered regions in the cytosolic and extra-cytosolic parts. In this study, we have investigated the disordered regions in transmembrane proteins by a stringent definition of disordered residues on the currently available largest experimental dataset, and show a significant correlation between the spatial distributions of positively charged residues and disordered regions. This finding suggests a new role of disordered regions in transmembrane proteins by providing structural flexibility for stabilizing interactions with negatively charged head groups of the lipid molecules. We also find a preference of structural disorder in the terminal--as opposed to loop--regions in transmembrane proteins, and survey the respective functions involved in recruiting other proteins or mediating allosteric signaling effects. Finally, we critically compare disorder prediction methods on our transmembrane protein set. While there are no major differences between these methods using the usual statistics, such as per residue accuracies, Matthew's correlation coefficients, etc.; substantial differences can be found regarding the spatial distribution of the predicted disordered regions. We conclude that a predictor optimized for transmembrane proteins would be of high value to the field of structural disorder.
Collapse
Affiliation(s)
- Gábor E Tusnády
- Institute of Enzymology, RCNS, HAS, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - László Dobson
- Institute of Enzymology, RCNS, HAS, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, RCNS, HAS, Magyar Tudósok körútja 2, 1117 Budapest, Hungary; VIB Structural Biology Research Center, VUB, Building E, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1153-66. [PMID: 24704038 DOI: 10.1016/j.bbapap.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors.
Collapse
|
7
|
Tantos A, Szabo B, Lang A, Varga Z, Tsylonok M, Bokor M, Verebelyi T, Kamasa P, Tompa K, Perczel A, Buday L, Lee SH, Choo Y, Han KH, Tompa P. Multiple fuzzy interactions in the moonlighting function of thymosin-β4. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26204. [PMID: 28516021 PMCID: PMC5424802 DOI: 10.4161/idp.26204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
Thymosine β4 (Tß4) is a 43 amino acid long intrinsically disordered protein (IDP), which was initially identified as an actin-binding and sequestering molecule. Later it was described to have multiple other functions, such as regulation of endothelial cell differentiation, blood vessel formation, wound repair, cardiac cell migration, and survival.1 The various functions of Tβ4 are mediated by interactions with distinct and structurally unrelated partners, such as PINCH, ILK, and stabilin-2, besides the originally identified G-actin. Although the cellular readout of these interactions and the formation of these complexes have been thoroughly described, no attempt was made to study these interactions in detail, and to elucidate the thermodynamic, kinetic, and structural underpinning of this range of moonlighting functions. Because Tβ4 is mostly disordered, and its 4 described partners are structurally unrelated (the CTD of stabilin-2 is actually fully disordered), it occurred to us that this system might be ideal to characterize the structural adaptability and ensuing moonlighting functions of IDPs. Unexpectedly, we found that Tβ4 engages in multiple weak, transient, and fuzzy interactions, i.e., it is capable of mediating distinct yet specific interactions without adapting stable folded structures.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Beata Szabo
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Lang
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Zoltan Varga
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Maksym Tsylonok
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Monika Bokor
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Tamas Verebelyi
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Pawel Kamasa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Kalman Tompa
- Institute for Solid State Physics and Optics; Wigner Research Centre for Physics of the Hungarian Academy of Sciences; Budapest, Hungary
| | - Andras Perczel
- Eötvös Loránd University; Institute of Chemistry; Budapest, Hungary
| | - Laszlo Buday
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Si Hyung Lee
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Yejin Choo
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
| | - Kyou-Hoon Han
- Division of Biosystems Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Republic of Korea
- Department of Bioinformatics; University of Science and Technology; Daejeon, Republic of Korea
| | - Peter Tompa
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| |
Collapse
|
8
|
Sigalov AB. Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:525-36. [DOI: 10.1016/j.pbiomolbio.2011.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
9
|
Sigalov AB. Cells diversify transmembrane signaling through the controlled chaos of protein disorder. SELF/NONSELF 2011; 2:75-79. [PMID: 22299058 PMCID: PMC3268992 DOI: 10.4161/self.2.2.15756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
Cell surface receptors function to transduce signals across the cell membrane leading to a variety of biologic responses. Structurally, these integral proteins can be classified into two main families, depending on whether extracellular ligand-binding and intracellular signaling domains are located on the same protein chain (single-chain receptors, SRs) or on separate subunits (multichain receptors, MRs). Since most MRs are immune receptors, they are all commonly referred to as multi-chain immune recognition receptors (MIRRs). Recent studies reveal that, in contrast to well-structured signaling domains of SRs, those of MIRRs represent intrinsically disordered regions, the regions that lack a well-defined three-dimensional structure under physiological conditions. Why did nature separate recognition and signaling functions of MIRRs? Why for MIRRs did nature select to provide highly specific signaling through the chaos of protein disorder? What mechanisms could control this chaos in the process of transmembrane signal transduction to provide the specificity and diversity of the immune response? Here, I summarize recent findings that may not only shed light on these and other questions but also add significantly to our understanding of receptor signaling, a fundamental process that plays a critical role in health and disease.
Collapse
|
10
|
Sigalov AB, Uversky VN. Differential occurrence of protein intrinsic disorder in the cytoplasmic signaling domains of cell receptors. SELF/NONSELF 2011; 2:55-72. [PMID: 21776336 PMCID: PMC3136905 DOI: 10.4161/self.2.1.14790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 01/25/2023]
Abstract
In human membrane proteins, intrinsically disordered regions, the regions that lack a well-defined three-dimensional structure under physiological conditions, preferentially occur in the cytoplasmic tails. Many of these proteins represent cell receptors that function by recognizing their cognate ligand outside the cell and translating this binding information into an intracellular activation signal. Based on location of recognition and signaling (effector) domains, functionally diverse and unrelated cell receptors can be classified into two main families: those in which binding and signaling domains are located on the same protein chain, the so-called single-chain receptors (SRs), and those in which these domains are intriguingly located on separate subunits, the so-called multichain receptors (MRs). Recognition domains of both SRs and MRs are known to be well ordered. In contrast, while cytoplasmic signaling domains of SRs are well-structured as well, those of MRs are intrinsically disordered. Despite important role of receptor signaling in health and disease, extensive comparative structural analysis of receptor signaling domains has not been carried out as of yet. In this study, using a variety of prediction algorithms, we show that protein disorder is a characteristic and distinctive feature of receptors with recognition and signaling functions distributed between separate protein chains. We also reveal that disorder distribution patterns are rather similar within SR subclasses suggesting potential functional explanations. Why did nature select protein disorder to provide intracellular signaling for MRs? Is there any correlation between disorder profiles of signaling domains and receptor function? These and other questions are addressed in this article.
Collapse
|