1
|
Lowry WE. Its written all over your face: The molecular and physiological consequences of aging skin. Mech Ageing Dev 2020; 190:111315. [PMID: 32681843 DOI: 10.1016/j.mad.2020.111315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 10/25/2022]
Abstract
Perhaps the most recognizable consequences of tissue aging are manifested in the skin. Hair graying and loss, telltale wrinkles, and age spots are indicative of physiological aging symptoms, many of which are analogous to processes in other tissues as well with less visible outcomes. While the study of skin aging has been conducted for decades, more recent work has illuminated many of the fundamental molecular and physiological causes of aging in the skin. Recent technological advances have allowed for the detection and quantification of a variety of physiological triggers that lead to aging in the skin and molecular methods have begun to determine the etiology of these phenotypic features. This review will attempt to summarize recent work in this area and provide some speculation about the next wave of studies.
Collapse
Affiliation(s)
- W E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Division of Dermatology, David Geffen School of Medicine, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Molecular Biology Institute, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Broad Center for Regenerative Medicine, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Jonsson Comprehensive Cancer Center, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States.
| |
Collapse
|
2
|
Gualandi M, Iorio M, Engeler O, Serra-Roma A, Gasparre G, Schulte JH, Hohl D, Shakhova O. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance 2020; 3:3/6/e201900601. [PMID: 32312912 PMCID: PMC7184028 DOI: 10.26508/lsa.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer characterized by increased mortality. Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Our data demonstrate that the overexpression of the constitutively active, mutated ALK, ALKF1174L, is sufficient to initiate the development of cSCC and is 100% penetrant. Moreover, we show that cSCC development upon ALKF1174L overexpression is independent of the cell-of-origin. Molecularly, our data demonstrate that ALKF1174L cooperates with oncogenic KrasG12D and loss of p53, well-established events in the biology of cSCC. This cooperation results in a more aggressive cSCC type associated with a higher grade histological morphology. Finally, we demonstrate that Stat3 is a key downstream effector of ALKF1174L and likely plays a role in ALKF1174L-driven cSCC tumorigenesis. In sum, these findings reveal that ALK can exert its tumorigenic potential via cooperation with multiple pathways crucial in the pathogenesis of cSCC. Finally, we show that human cSCCs contain mutations in the ALK gene. Taken together, our data identify ALK as a new key player in the pathogenesis of cSCC, and this knowledge suggests that oncogenic ALK signaling can be a target for future clinical trials.
Collapse
Affiliation(s)
- Marco Gualandi
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Maria Iorio
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Olivia Engeler
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - André Serra-Roma
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Johannes H Schulte
- Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Daniel Hohl
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Centre, Lausanne, Switzerland
| | - Olga Shakhova
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Lowry WE, Flores A, White AC. Exploiting Mouse Models to Study Ras-Induced Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2016; 136:1543-1548. [DOI: 10.1016/j.jid.2016.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022]
|