1
|
Kaur C, Villarreal E, Cabe MH, Langert KA. Blood nerve barrier permeability enables nerve targeting of circulating nanoparticles in experimental autoimmune neuritis. Sci Rep 2025; 15:11763. [PMID: 40189681 PMCID: PMC11973151 DOI: 10.1038/s41598-025-96231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Guillain-Barré syndrome (GBS) is a devastating autoimmune disease of the peripheral nervous system (PNS) with limited treatment options. Several studies have shown attenuation of the well-characterized GBS preclinical experimental autoimmune neuritis (EAN) model with systemically administered therapeutic compounds via anti-inflammatory or immunomodulatory mechanisms. Despite this, clinical advancement of these findings is limited by dosing that is not translatable to humans or is associated with off-target and toxic effects. This is due, in part, to the blood-nerve barrier (BNB), which restricts access of the circulation to peripheral nerves. However, during acute neuroinflammation, the normally restrictive BNB exhibits increased vascular permeability and enables immune cell infiltration. This may offer a unique window to access the otherwise restricted peripheral nerve microenvironment for therapeutic delivery. Here, we assessed the degree to which BNB permeability and immune cell infiltration over the course of EAN enables accumulation of circulating nanoparticles. We found that at disease stages defined by distinct clinical scores and pathology (onset, effector phase, and peak of EAN severity), intravenously administered small molecules and nanoparticles ranging from 50 to 150 nm can permeate into the endoneurium from the endoneurial vasculature in a size- and stage-dependent manner. This permeation occurs uniformly in both sciatic nerves and in proximal and distal regions of the nerves. We propose that this nerve targeting enabled by pathology serves as a platform by which potential therapies for GBS can be reevaluated and investigated preclinically in nanoparticle delivery systems.
Collapse
Affiliation(s)
- Chanpreet Kaur
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Bldg 115, Room 416, Maywood, IL, 60153, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Ellaina Villarreal
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Bldg 115, Room 416, Maywood, IL, 60153, USA
| | - Maleen H Cabe
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Bldg 115, Room 416, Maywood, IL, 60153, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Bldg 115, Room 416, Maywood, IL, 60153, USA.
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
| |
Collapse
|
2
|
Shouib R, Eitzen G. Cdc42 regulates cytokine expression and trafficking in bronchial epithelial cells. Front Immunol 2022; 13:1069499. [PMID: 36618374 PMCID: PMC9816864 DOI: 10.3389/fimmu.2022.1069499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.
Collapse
|
3
|
Rao VR, Stubbs EB. TGF-β2 Promotes Oxidative Stress in Human Trabecular Meshwork Cells by Selectively Enhancing NADPH Oxidase 4 Expression. Invest Ophthalmol Vis Sci 2021; 62:4. [PMID: 33821883 PMCID: PMC8039474 DOI: 10.1167/iovs.62.4.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose The multifunctional profibrotic cytokine TGF-β2 is implicated in the pathophysiology of primary open angle glaucoma (POAG). While the underlying cause of POAG remains unclear, TGF-β2 dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Mitochondrial-targeted antioxidants have been recently shown by our group to markedly attenuate TGF-β2 profibrotic responses, strongly implicating oxidative stress as a key facilitator of TGF-β2 signaling in human TM cells. In this study, we determined the mechanism by which oxidative stress facilitates TGF-β2 profibrotic responses in cultured primary human TM cells. Methods Semiconfluent cultures of primary or transformed human TM cells were conditioned overnight in serum-free media and subsequently challenged without or with TGF-β2 (5 ng/mL). Relative changes in the mRNA content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) isoforms, connective tissue growth factor (CTGF), collagen 1α1 and 4α1 isoforms or relative changes in the protein content of Nox4, phospho- and total-Smad2 and -Smad3, collagens I and IV were determined in the absence or presence of GKT137831, a Nox1-Nox4 dual enzyme inhibitor, and quantified by real-time qPCR or by immunoblot, respectively. Relative in situ changes in collagens I and IV and in alpha smooth muscle actin (αSMA) were semiquantified by immunocytochemistry, whereas relative changes in filamentous actin stress fiber formation was semiquantified by phalloidin staining. Results Quiescent primary human TM cells cultured in the presence of TGF-β2 exhibited a marked selective increase in endogenous Nox4 mRNA and Nox4 protein expression. Actinomycin D prevented TGF-β2 mediated increases in Nox4 mRNA expression. TM cells reverse transfected with siRNA against Smad3 prevented TGF-β2 mediated increases in Nox4 mRNA expression. Pre-incubating TM cells with GKT137831 attenuated TGF-β2 mediated increases in intracellular reactive oxygen species (ROS), in COL1A1, COL4A1, and CTGF mRNA expression, in Smad3 protein phosphorylation, in collagens I, collagens IV, and αSMA protein expression, and in filamentous actin stress fiber formation. Conclusions TGF-β2 promotes oxidative stress in primary human TM cells by selectively increasing expression of NADPH oxidase 4. Dysregulation of redox equilibrium by induction of NADPH oxidase 4 expression appears to be a key early event involved in the pathologic profibrotic responses elicited by TGF-β2 canonical signaling, including ECM remodeling, filamentous actin stress fiber formation, and αSMA expression. Selective inhibition of Nox4 expression/activation, in combination with mitochondrial-targeted antioxidants, represents a novel strategy by which to slow the progression of TGF-β2 elicited profibrotic responses within the TM.
Collapse
Affiliation(s)
- Vidhya R. Rao
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, United States
- Department of Ophthalmology, Loyola University Health Science Division, Maywood, IL, United States
| | - Evan B. Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, United States
- Department of Ophthalmology, Loyola University Health Science Division, Maywood, IL, United States
| |
Collapse
|
4
|
Wang X, Gou L, Gao Y, Huang Y, Kuai R, Li Y, Wang Y, Chen Y, Li J, Cheng C, Feng Z, Wu X, Yao R. RalA exerts an inhibitory effect on IL-1β/IL-18 secretion by blocking NLRP3 inflammasome activation in levornidazole-treated human THP-1 macrophages. Int Immunopharmacol 2020; 88:106898. [PMID: 32866784 DOI: 10.1016/j.intimp.2020.106898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The NLRP3 inflammasome is an important mediator of inflammatory responses and its regulation is an active area of research. RalA is a Ras-like GTPase, which play pivotal roles in the biology of cells. So far, there have been very few studies on RalA regulating inflammatory responses. Bioinformatics analysis predicted that RalA might participate in the regulatory network of NLRP3 inflammasome, which has been confirmed in THP-1 macrophages. After virtual screening of compounds, it was found that levonidazole selected from our virtual small molecule compound library has the potential to bind to RalA. Of note, the interaction of RalA/levornidazole was verified by Surface Plasmon Resonance-Biacore T200, LC/MS analysis and Western blotting analysis. Molecular dynamics simulations revealed that the conformational changes of RalA might be regulated by levornidazole. Additionally, IL-1β/IL-18 secretion from ATP + LPS stimulated THP-1-derived macrophages was RalA-dependently suppressed by levornidazole, suggesting that RalA might have an inhibitory effect on NLRP3 inflammasome activation. The results of co-immunoprecipitation and RalA depletion experiments showed that levornidazole could induce RalA to block the assembly of NLRP3/ASC/pro-caspase-1 complex, thereby reducing the levels of cleaved-caspase-1 and IL-1β/IL-18 secretion. Our study has suggested an anti-inflammatory function of RalA and identified its targeting chemical compound. Overall, this study clarifies a novel pharmacological mechanism by which RalA/levornidazole inhibits NLRP3 inflammasome activation and IL-1β/IL-18 secretion.
Collapse
Affiliation(s)
- Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China.
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Yuzhi Gao
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, Jiangsu, China
| | - Yuqing Huang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Rui Kuai
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Yu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Yujing Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Yanhong Chen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Jun Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Chao Cheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Zhaojun Feng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Jiangsu, China.
| | - Ruiqin Yao
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, Jiangsu, China.
| |
Collapse
|
5
|
Stubbs EB. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol 2020; 331:113385. [PMID: 32562668 DOI: 10.1016/j.expneurol.2020.113385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Healthy peripheral nerves encounter, with increased frequency, numerous chemical, biological, and biomechanical forces. Over time and with increasing age, these forces collectively contribute to the pathophysiology of a spectrum of traumatic, metabolic, and/or immune-mediated peripheral nerve disorders. The blood-nerve barrier (BNB) serves as a critical first-line defense against chemical and biologic insults while biomechanical forces are continuously buffered by a dense array of longitudinally orientated epineural collagen fibers exhibiting high-tensile strength. As emphasized throughout this Experimental Neurology Special Issue, the BNB is best characterized as a functionally dynamic multicellular vascular unit comprised of not only highly specialized endoneurial endothelial cells, but also associated perineurial cells, pericytes, Schwann cells, basement membrane, and invested axons. The composition of the BNB, while anatomically distinct, is not functionally dissimilar to that of the well characterized neurovascular unit of the central nervous system. While the BNB lacks a glial limitans and an astrocytic endfoot layer, the primary function of both vascular units is to establish, maintain, and protect an optimal endoneurial (PNS) or interstitial (CNS) fluid microenvironment that is vital for proper neuronal function. Altered endoneurial homeostasis as a secondary consequence of BNB dysregulation is considered an early pathological event in the course of a variety of traumatic, immune-mediated, or metabolically acquired peripheral neuropathies. In this review, emerging experimental advancements targeting the endoneurial microvasculature for the therapeutic management of immune-mediated inflammatory peripheral neuropathies, including the AIDP variant of Guillain-Barré syndrome, are discussed.
Collapse
Affiliation(s)
- Evan B Stubbs
- Research Service (151), Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; Department of Ophthalmology, Loyola University Health Science Division, Maywood, IL 60153, USA.
| |
Collapse
|
6
|
Schafflick D, Kieseier BC, Wiendl H, Meyer Zu Horste G. Novel pathomechanisms in inflammatory neuropathies. J Neuroinflammation 2017; 14:232. [PMID: 29179723 PMCID: PMC5704548 DOI: 10.1186/s12974-017-1001-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory neuropathies are rare autoimmune-mediated disorders affecting the peripheral nervous system. Considerable progress has recently been made in understanding pathomechanisms of these disorders which will be essential for developing novel diagnostic and therapeutic strategies in the future. Here, we summarize our current understanding of antigenic targets and the relevance of new immunological concepts for inflammatory neuropathies. In addition, we provide an overview of available animal models of acute and chronic variants and how new diagnostic tools such as magnetic resonance imaging and novel therapeutic candidates will benefit patients with inflammatory neuropathies in the future. This review thus illustrates the gap between pre-clinical and clinical findings and aims to outline future directions of development.
Collapse
Affiliation(s)
- David Schafflick
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gerd Meyer Zu Horste
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
7
|
Non-muscular myosin light chain kinase triggers intermittent hypoxia-induced interleukin-6 release, endothelial dysfunction and permeability. Sci Rep 2017; 7:13664. [PMID: 29057883 PMCID: PMC5651916 DOI: 10.1038/s41598-017-13268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
Obstructive sleep apnea is characterized by intermittent hypoxia (IH) which alters endothelial function, induces inflammation and accelerates atherosclerosis-induced cardiovascular diseases. The non-muscular myosin light chain kinase (nmMLCK) isoform contributes to endothelial cell-cell junction opening. Deletion of nmMLCK protects mice from death in septic shock models and prevents atherosclerosis in high-fat diet-fed mice. The aim of the study was to analyze the implication of nmMLCK in IH-induced vascular inflammation. Human aortic endothelial cells were exposed to 6 hours of IH in absence or presence of nmMLCK inhibitors, ML-7 (5 µM) or PIK (150 µM). IH increased reactive oxygen species (ROS) and nitric oxide (NO) production, p65-NFκB activation and IL-6 secretion. While nmMLCK inhibition did not prevent IH-induced ROS production and p65-NFκB activation, it decreased NO production and partially prevented IL-6 secretion. IH-induced IL-6 secretion and vesicle-associated membrane protein-associated vesicles re-organization were inhibited in presence of the inhibitor of protein secretion, brefeldin A, or ML-7. IH increased monocytes transendothelial migration that was partially prevented by ML-7. Finally, IH reduced endothelium-dependent relaxation to acetylcholine of aortas from wild-type but not those taken from nmMLCK-deficient mice. These results suggest that nmMLCK participates to IH-induced endothelial dysfunction resulting from cytokines secretion and endothelial permeability.
Collapse
|
8
|
Langert KA, Goshu B, Stubbs EB. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles. J Neurochem 2016; 140:334-346. [PMID: 27861905 DOI: 10.1111/jnc.13892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Acute inflammatory demyelinating polyneuropathy (AIDP) is an aggressive antibody- and T-cell-mediated variant of Guillain-Barré Syndrome (GBS), a prominent and debilitating autoimmune disorder of the peripheral nervous system. Despite advancements in clinical management, treatment of patients with AIDP/GBS and its chronic variant CIDP remains palliative and relies on the use of non-specific immunemodulating therapies. Our laboratory has previously reported that therapeutic administration of statins safely attenuates the clinical severity of experimental autoimmune neuritis (EAN), a well-characterized animal model of AIDP/GBS, by restricting the migration of autoreactive leukocytes across peripheral nerve microvascular endoneurial endothelial cells that form the blood-nerve barrier. Despite these advancements, the clinical application of systemically administered statins for the management of inflammatory disorders remains controversial as a result of disappointingly inconclusive phase trials. Here, poly(lactic-co-glycolic) acid (PLGA) nanoparticles were evaluated as an alternative strategy by which to locally administer statins for the management of EAN. When tested in vitro, lovastatin-encapsulating PLGA nanoparticles elicited a marked increase in RhoB mRNA content in peripheral nerve microvascular endoneurial endothelial cells, similar to cells treated with activated unencapsulated lovastatin. Unilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles, but not empty nanoparticles, to naïve Lewis rats similarly enhanced RhoB mRNA content in adjacent nerve and muscle tissue. When administered in this manner, serum levels of lovastatin were below the level of detection. Bilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles to EAN-induced Lewis rats significantly attenuated EAN clinical severity while protecting against EAN-induced peripheral nerve morphological and functional deficits. This study provides the first proof-of-concept approach for the application of a nanoparticle-based local drug delivery platform for the management of inflammatory demyelinating diseases, including AIDP/GBS.
Collapse
Affiliation(s)
- Kelly A Langert
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Bruktawit Goshu
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Evan B Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, Illinois, USA.,Program of Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA.,Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
9
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
10
|
Pervan CL, Lautz JD, Blitzer AL, Langert KA, Stubbs EB. Rho GTPase signaling promotes constitutive expression and release of TGF-β2 by human trabecular meshwork cells. Exp Eye Res 2016; 146:95-102. [PMID: 26743044 PMCID: PMC4893883 DOI: 10.1016/j.exer.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Elevated intraocular pressure (IOP) is causally implicated in the pathophysiology of primary open-angle glaucoma (POAG). The molecular mechanisms responsible for elevated IOP remain elusive, but may involve aberrant expression and signaling of transforming growth factor (TGF)-β2 within the trabecular meshwork (TM). Consistent with previously published studies, we show here that exogenous addition of TGF-β2 to cultured porcine anterior segments significantly attenuates outflow facility in a time-dependent manner. By comparison, perfusing segments with a TGFβRI/ALK-5 antagonist (SB-431542) unexpectedly elicited a significant and sustained increase in outflow facility, implicating a role for TM-localized constitutive expression and release of TGF-β2. Consistent with this thesis, cultured primary or transformed (GTM3) quiescent human TM cells were found to constitutively express and secrete measurable amounts of biologically-active TGF-β2. Disrupting monomeric GTPase post-translational prenylation and activation with lovastatin or GGTI-298 markedly reduced constitutive TGF-β2 expression and release. Specifically, inhibiting the Rho subfamily of GTPases with C3 exoenzyme similarly reduced constitutive expression and secretion of TGF-β2. These findings suggest that Rho GTPase signaling, in part, regulates constitutive expression and release of biologically-active TGF-β2 from human TM cells. Localized constitutive expression and release of TGF-β2 by TM cells may promote or exacerbate elevation of IOP in POAG.
Collapse
Affiliation(s)
- Cynthia L Pervan
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA.
| | - Jonathan D Lautz
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Program in Neuroscience, Loyola University Chicago, Maywood, IL, USA
| | - Andrea L Blitzer
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kelly A Langert
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Evan B Stubbs
- Research Service, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA; Program in Neuroscience, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|