1
|
Chu HP, Froberg JE, Kesner B, Oh HJ, Ji F, Sadreyev R, Pinter SF, Lee JT. PAR-TERRA directs homologous sex chromosome pairing. Nat Struct Mol Biol 2017; 24:620-631. [PMID: 28692038 PMCID: PMC5553554 DOI: 10.1038/nsmb.3432] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022]
Abstract
In mammals, homologous chromosomes rarely pair outside of meiosis. An exception is the X-chromosome, which transiently pairs during X-chromosome inactivation (XCI). How two chromosomes find each other in 3D space is not known. Here, we reveal a required interaction between the X-inactivation center (Xic) and the telomere in mouse embryonic stem cells. The sub-telomeric, pseudoautosomal region (PAR) of both sex chromosomes (X,Y) also undergoes pairing. PAR transcribes a class of telomeric RNA, dubbed “PAR-TERRA”, which accounts for a vast majority of all TERRA transcripts. PAR-TERRA binds throughout the genome, including PAR and Xic. PAR-TERRA anchors the Xic to PAR, creating a “tetrad” of pairwise homologous interactions (Xic:Xic, PAR:PAR, Xic:PAR). Xic pairing occurs within the tetrad. Depleting PAR-TERRA abrogates pairing and blocks initiation of XCI, whereas autosomal PAR-TERRA induces ectopic pairing. We proposed a Constrained Diffusion Model in which PAR-TERRA creates an interaction hub to guide Xic homology searching during XCI.
Collapse
Affiliation(s)
- Hsueh-Ping Chu
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - John E Froberg
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Kesner
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyun Jung Oh
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefan F Pinter
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression. Sci Rep 2017; 7:42056. [PMID: 28169375 PMCID: PMC5294645 DOI: 10.1038/srep42056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor gene (Rb1) is necessary for the maintenance of telomere integrity in osteoblastic cells. We now show that the compaction of telomeric chromatin and the appropriate histone modifications of telomeric DNA are both dependent upon Rb1-mediated transcription of the telomere-derived long non-coding RNA TERRA. Expression of TERRA was reduced in Rb1 haploinsufficient cells, and further decreased by shRNA-mediated reduction of residual Rb1 expression. Restoration of Rb1 levels through lentiviral transduction was sufficient to reestablish both transcription of TERRA and condensation of telomeric chromatin. The human chromosome 15q TERRA promoter contains predicted retinoblastoma control elements, and was able to confer Rb1-dependent transcription upon a promoterless reporter gene. Chromatin immunoprecipitation revealed preferential binding of phosphorylated over non-phosphorylated Rb1 at the TERRA promoter. As Rb1-deficient cells show increased genomic instability we suggest that this novel non-canonical action of Rb1 may contribute to the tumour suppressive actions of Rb1.
Collapse
|
3
|
Moravec M, Wischnewski H, Bah A, Hu Y, Liu N, Lafranchi L, King MC, Azzalin CM. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 2016; 17:999-1012. [PMID: 27154402 DOI: 10.15252/embr.201541708] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.
Collapse
Affiliation(s)
- Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Harry Wischnewski
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Amadou Bah
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Lorenzo Lafranchi
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Claus M Azzalin
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
4
|
Gonzalez-Vasconcellos I, Alonso-Rodríguez S, López-Baltar I, Fernández JL. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity. Mutat Res 2015; 771:51-55. [PMID: 25771980 DOI: 10.1016/j.mrfmmm.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.
Collapse
Affiliation(s)
- Iria Gonzalez-Vasconcellos
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain
| | - Silvia Alonso-Rodríguez
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain
| | - Isidoro López-Baltar
- Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, 15009 A Coruña, Spain
| | - José Luis Fernández
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, As Xubias, 84, 15006 A Coruña, Spain; Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, 15009 A Coruña, Spain.
| |
Collapse
|
5
|
Martínez-Guitarte JL, de la Fuente M, Morcillo G. Telomeric transcriptome from Chironomus riparius (Diptera), a species with noncanonical telomeres. INSECT MOLECULAR BIOLOGY 2014; 23:367-380. [PMID: 24580894 DOI: 10.1111/imb.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although there are alternative telomere structures, most telomeres contain DNA arrays of short repeats (6-26 bp) maintained by telomerase. Like other diptera, Chironomus riparius has noncanonical telomeres and three subfamilies, TsA, TsB and TsC, of longer sequences (176 bp) are found at their chromosomal ends. Reverse transcription PCR was used to show that different RNAs are transcribed from these sequences. Only one strand from TsA sequences seems to render a noncoding RNA (named CriTER-A); transcripts from both TsB strands were found (CriTER-B and αCriTER-B) but no TsC transcripts were detected. Interestingly, these sequences showed a differential transcriptional response upon heat shock, and they were also differentially affected by inhibitors of RNA polymerase II and RNA polymerase III. A computer search for transcription factor binding sites revealed putative regulatory cis-elements within the transcribed sequence, reinforcing the experimental evidence which suggests that the telomeric repeat might function as a promoter. This work describes the telomeric transcriptome of an insect with non-telomerase telomeres, confirming the evolutionary conservation of telomere transcription. Our data reveal differences in the regulation of telomeric transcripts between control and stressful environmental conditions, supporting the idea that telomeric RNAs could have a relevant role in cellular metabolism in insect cells.
Collapse
Affiliation(s)
- J L Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | | | | |
Collapse
|
6
|
Abstract
Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.
Collapse
|
7
|
Vitelli V, Falvo P, Khoriauli L, Smirnova A, Gamba R, Santagostino M, Nergadze SG, Giulotto E. More on the Lack of Correlation between Terra Expression and Telomere Length. Front Oncol 2013; 3:245. [PMID: 24066279 PMCID: PMC3776138 DOI: 10.3389/fonc.2013.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Valerio Vitelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," Università degli Studi di Pavia , Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Smirnova A, Gamba R, Khoriauli L, Vitelli V, Nergadze SG, Giulotto E. TERRA Expression Levels Do Not Correlate with Telomere Length and Radiation Sensitivity in Human Cancer Cell Lines. Front Oncol 2013; 3:115. [PMID: 23717814 PMCID: PMC3650684 DOI: 10.3389/fonc.2013.00115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/25/2013] [Indexed: 11/13/2022] Open
Abstract
Mammalian telomeres are transcribed into long non-coding telomeric repeat-containing RNA (TERRA) molecules that seem to play a role in the maintenance of telomere stability. In human cells, CpG-island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma), BRC-230 (breast cancer), AKG and GK2 (gastric cancers), and GM847 (SV40 immortalized skin fibroblasts). However, these two parameters did not correlate with each other. Moreover, cell survival to γ-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.
Collapse
Affiliation(s)
- Alexandra Smirnova
- Laboratorio di Biologia Molecolare e Cellulare, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia Pavia, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Dedukh D, Mazepa G, Shabanov D, Rosanov J, Litvinchuk S, Borkin L, Saifitdinova A, Krasikova A. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet 2013; 14:26. [PMID: 23590698 PMCID: PMC3648425 DOI: 10.1186/1471-2156-14-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes. Results In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes. Conclusions The constructed cytological maps of lampbrush chromosomes of P. ridibundus and P. lessonae provide basis to define the type of genome transmitted within individual oocytes of P. esculentus females with different ploidy and from various population systems.
Collapse
Affiliation(s)
- Dmitry Dedukh
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The human helicase and ATPase up-frameshift suppressor 1 (UPF1), traditionally known as a major player in several RNA quality control mechanisms, is emerging as a crucial caretaker of the stability of the genome. Work from my laboratory has provided insight into the function of UPF1 during DNA metabolism and has revealed that this versatile enzyme sustains the proper replication of telomeres, the protective structures located at the ends of linear eukaryotic chromosomes. We have supplied direct evidence that telomere replication is not completed in cells with compromised UPF1 function, leading to the accumulation of DNA damage and telomere abnormalities. We also have isolated a number of factors that physically interact with UPF1 and might represent molecular links between UPF1 and telomeres. In this paper, I re-evaluate the functions of UPF1 in maintaining the stability of telomeres and of the genome at large and suggest a model that explains how UPF1 might be recruited and function during telomere replication.
Collapse
Affiliation(s)
- Claus M Azzalin
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland.
| |
Collapse
|
11
|
Dang-Nguyen TQ, Haraguchi S, Furusawa T, Somfai T, Kaneda M, Watanabe S, Akagi S, Kikuchi K, Tajima A, Nagai T. Downregulation of histone methyltransferase genes SUV39H1 and SUV39H2 increases telomere length in embryonic stem-like cells and embryonic fibroblasts in pigs. J Reprod Dev 2012; 59:27-32. [PMID: 23018532 PMCID: PMC3943233 DOI: 10.1262/jrd.2012-118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Telomere is a nucleoprotein structure at the ends of chromosomes that helps to protect
the ends of chromosomes from being fused with other chromosomes. Knockout of histone
methyltransferases Suv39h1 and Suv39h2 increases the telomere length in murine cells,
whereas downregulation of SUV39H1 and SUV39H2 genes
decreases the telomere length in human cells, suggesting that telomere biology is
different among mammalian species. However, epigenetic regulation of the telomere has not
been studied in mammals other than the human and mouse. In the present study, the effect
of knockdown of SUV39H1 and SUV39H2 genes on telomere
length was examined in porcine embryonic stem-like cells (pESLCs) and porcine embryonic
fibroblasts (PEFs). The telomeres in SUV39H1 and SUV39H2
knockdown (SUV39KD) pESLCs (37.1 ± 0.9 kb) were longer (P<0.05) compared with those of
the control (33.0 ± 0.7 kb). Similarly, SUV39KD PEFs had longer telomeres (22.1 ± 0.4 kb;
P<0.05) compared with the control (17.8 ± 1.1 kb). Telomerase activities were not
different between SUV39KD pESLCs (10.4 ± 1.7) and the control (10.1 ± 1.7) or between
SUV39KD PEFs (1.0 ± 0.3) and the control (1.0 ± 0.4), suggesting that telomerase
activities did not contribute to the telomere elongation in SUV39KD pESLCs and SUV39KD
PEFs. Relative levels of trimethylation of histone H3 lysine 9 and expressions of
DNMT1, DNMT3A and DNMT3B were
decreased in SUV39KD cells, suggesting that telomere lengthening in SUV39KD pESLCs and
SUV39KD PEFs might be not only related to the loss of histone modification marks but also
linked to the decrease in DNA methyltransferase in pigs.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Department of Animal Breeding and Reproduction, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts. Chromosoma 2012; 121:475-88. [PMID: 22797876 PMCID: PMC3443485 DOI: 10.1007/s00412-012-0379-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 01/03/2023]
Abstract
Many human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli’s zebra and Grevy’s zebra. In vitro analysis of a reconstituted telomerase composed by hTERT and an equid RNA component of telomerase (TERC) revealed a low activity of this enzyme compared to human telomerase, suggesting a low compatibility of equid and human telomerase subunits. This conclusion was also strengthened by comparison of human and equid TERC sequences, which revealed nucleotide differences in key regions for TERC and TERT interaction. We then succeeded in immortalizing equid fibroblasts by expressing hTERT and hTERC concomitantly. Expression of both human telomerase subunits led to telomerase activity and telomere elongation, indicating that human telomerase is compatible with the other equid telomerase subunits and proteins involved in telomere metabolism. The immortalization procedure described herein could be extended to primary cells from other mammals. The availability of immortal cells from endangered species could be particularly useful for obtaining new information on the organization and function of their genomes, which is relevant for their preservation.
Collapse
|
13
|
Abstract
Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One 2012; 7:e35714. [PMID: 22558207 PMCID: PMC3338753 DOI: 10.1371/journal.pone.0035714] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA). Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.
Collapse
Affiliation(s)
- Benjamin O. Farnung
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Catherine M. Brun
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Rajika Arora
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Luca E. Lorenzi
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Claus M. Azzalin
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
15
|
|
16
|
Bah A, Wischnewski H, Shchepachev V, Azzalin CM. The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res 2011; 40:2995-3005. [PMID: 22139915 PMCID: PMC3326308 DOI: 10.1093/nar/gkr1153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic telomeres are transcribed into telomeric repeat-containing RNA (TERRA). Telomeric transcription has been documented in mammals, birds, zebra fish, plants and budding yeast. Here we show that the chromosome ends of Schizosaccharomyces pombe produce distinct RNA species. As with budding yeast and mammals, S. pombe contains G-rich TERRA molecules and subtelomeric RNA species transcribed in the opposite direction of TERRA (ARRET). Moreover, fission yeast chromosome ends produce two novel RNA species: C-rich telomeric repeat-containing transcripts (ARIA) and subtelomeric transcripts complementary to ARRET (αARRET). RNA polymerase II (RNAPII) associates with pombe chromosome ends in vivo and the telomeric factor Rap1 negatively regulates this association, as well as the cellular accumulation of RNA emanating from chromosome ends. We also show that the RNAPII subunit Rpb7 and the non-canonical poly(A) polymerases Cid12 and Cid14 are involved in the regulation of TERRA, ARIA, ARRET and αARRET transcripts. We confirm the evolutionary conservation of telomere transcription, and reveal intriguing similarities and differences in the composition and regulation of telomeric transcripts among model organisms.
Collapse
Affiliation(s)
- Amadou Bah
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|