1
|
Tu WJ, Hardy K, Sutton CR, McCuaig R, Li J, Dunn J, Tan A, Brezar V, Morris M, Denyer G, Lee SK, Turner SJ, Seddiki N, Smith C, Khanna R, Rao S. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells. Sci Rep 2017; 7:44825. [PMID: 28317936 PMCID: PMC5357947 DOI: 10.1038/srep44825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Memory T cells exhibit transcriptional memory and “remember” their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to “remember” their initial environmental encounter.
Collapse
Affiliation(s)
- Wen Juan Tu
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Kristine Hardy
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Christopher R Sutton
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Robert McCuaig
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jasmine Li
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jenny Dunn
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Abel Tan
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Vedran Brezar
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Melanie Morris
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Gareth Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Sau Kuen Lee
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Nabila Seddiki
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sudha Rao
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| |
Collapse
|
2
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
3
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|