1
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
2
|
Tong JB, Luo D, Feng Y, Bian S, Zhang X, Wang TH. Structural modification of 4, 5-dihydro-[1, 2, 4] triazolo [4, 3-f] pteridine derivatives as BRD4 inhibitors using 2D/3D-QSAR and molecular docking analysis. Mol Divers 2021; 25:1855-1872. [PMID: 33392965 DOI: 10.1007/s11030-020-10172-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
Cancer treatment continues to be one of the most serious public health issues in the world. The overexpression of BRD4 protein has led to a series of malignant tumors, hence the development of small molecule BRD4 protease inhibitors has always been a hot spot in the field of medical research. In this study, a series of 4,5-dihydro-[1, 2, 4] triazolo [4, 3-f] pteridine derivatives were used to establish 3D/2D-QSAR models and to discuss the relationship between inhibitor structure and activity. Four ideal models were established, including the comparative molecular field analysis (CoMFA: [Formula: see text] = 0.574, [Formula: see text] = 0.947) model, comparative molecular similarity index analysis (CoMSIA: [Formula: see text]= 0.622, [Formula: see text] = 0.916) model, topomer CoMFA ([Formula: see text] = 0.691, [Formula: see text]= 0.912) model and hologram quantitative structure-activity relationship (HQSAR: [Formula: see text]= 0.759, [Formula: see text] = 0.963) model. They show quite good external predictive power for the test set, with [Formula: see text] values of 0.602, 0.624, 0.671 and 0.750, respectively. In addition, the contour and color code map given by the 2D/3D-QSAR model with the results of molecular docking analyzed to chalk up modification methods for improving inhibitory activity, which was verified by designing novel compounds. The analysis results are helpful to promote the modification of the inhibitor framework and to provide a reference for the construction of new and promising BRD4 inhibitor compounds.
Collapse
Affiliation(s)
- Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China.
| | - Ding Luo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yi Feng
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Shuai Bian
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Xing Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Tian-Hao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| |
Collapse
|
3
|
Blocking the Bromodomains Function Contributes to Disturbances in Alga Chara vulgaris Spermatids Differentiation. Cells 2020; 9:cells9061352. [PMID: 32486024 PMCID: PMC7349737 DOI: 10.3390/cells9061352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Bromodomain containing (BRD) proteins play an essential role in many cellular processes. The aim of this study was to estimate activity of bromodomains during alga Chara vulgaris spermatids differentiation. The effect of a bromodomain inhibitor, JQ1 (100 μM), on the distribution of individual stages of spermatids and their ultrastructure was studied. The material was Feulgen stained and analysed in an electron microscope. JQ1 caused shortening of the early stages of spermiogenesis and a reverse reaction at the later stages. Additionally, in the same antheridium, spermatids at distant developmental stages were present. On the ultrastructural level, chromatin fibril system disorders and significantly distended endoplasmic reticulum (ER) cisternae already at the early stages were observed. Many autolytic vacuoles were also visible. The ultrastructural disturbances intensified after prolonged treatment with JQ1. The obtained data show that JQ1 treatment led to changes in the spermatid number and disturbances in chromatin condensation and to cytoplasm reduction. The current studies show some similarities between C. vulgaris and mammals spermiogenesis. Taken together, these results suggest that JQ1 interferes with the spermatid differentiation on many interdependent levels and seems to induce ER stress, which leads to spermatid degeneration. Studies on the role of bromodomains in algae spermiogenesis have not been conducted so far.
Collapse
|
4
|
Bourova-Flin E, Chuffart F, Rousseaux S, Khochbin S. The Role of Bromodomain Testis-Specific Factor, BRDT, in Cancer: A Biomarker and A Possible Therapeutic Target. CELL JOURNAL 2017; 19:1-8. [PMID: 28580303 PMCID: PMC5448322 DOI: 10.22074/cellj.2017.5060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
Abstract
Cancer cells have recently been shown to activate hundreds of normally silent
tissue-restricted genes, including a specific subset associated with cancer progression and
poor prognosis. Within these genes, a class of testis-specific genes designed as
cancer/testis, attracted special attention because of their oncogenic roles as well as
their potential use in immunotherapy. Here we focus on one of these genes encoding the
testis-specific member of the bromodomain and extra-terminal (BET) family,
known as BRDT. Aberrant activation of BRDT was first detected in lung cancers. In
this study, we report that the frequency of BRDT’s aberrant activation in lung cancer
varies according to the histological subtypes and in contrast with other cancer/testis
genes, it is rarely expressed in other solid tumours. The functional characterization
of BRDT in its physiological setting in male germ cells is now painting a clear portrait
of its normal activity and also suggests possible underlying oncogenic activities,
when the gene is ectopically activated in cancers. Also, these functional studies of
BRDT point to specific anti-cancer therapeutic strategies that could be used to “high-jack”
BRDT’s action and turn it against cancer cells, which express this gene. Finally,
BRDT’s expression could be used as a biomarker for cell sensitivity to BET bromodomain
inhibitors, which have become newly available as anti-cancer drugs.
Collapse
Affiliation(s)
- Ekaterina Bourova-Flin
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Florent Chuffart
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
5
|
Li L, Sha Y, Wang X, Li P, Wang J, Kee K, Wang B. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget 2017; 8:19914-19922. [PMID: 28199965 PMCID: PMC5386733 DOI: 10.18632/oncotarget.15251] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Acephalic spermatozoa is a very rare disorder of male infertility. Here, in a patient from from a consanguineous family, we have identified, by whole-exome sequencing, a homozygous mutation (c.G2783A, p.G928D) in the BRDT gene. The gene product, BRDT, is a testis-specific protein that is considered an important drug target for male contraception. The G928D mutation is in the P-TEFb binding domain, which mediates the interaction with transcription elongation factor and might affect the transcriptional activities of downstream genes. By RNA-sequencing analysis of cells expressing the BRDT mutation, we found the p.G928D mutation protein causes mis-regulation of 899 genes compared with BRDT wild-type cells. Furthermore, by Gene Ontology analysis, the upregulated genes in p.G928D cells were enriched in the processes of intracellular transport, RNA splicing, cell cycle and DNA metabolic process, revealing the underlying mechanism of the pathology that leads to acephalic spermatozoa.
Collapse
Affiliation(s)
- Lin Li
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yanwei Sha
- Reproductive Medicine Center, Xiamen Maternal and Child Health Care Hospital, Xiamen, 361005, Fujian Province, China
| | - Xi Wang
- Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, 100081, China
| | - Ping Li
- Reproductive Medicine Center, Xiamen Maternal and Child Health Care Hospital, Xiamen, 361005, Fujian Province, China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, 100081, China
| |
Collapse
|
6
|
Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, Schumacher V, Geyer M, Kristiansen G, Schorle H. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med 2016; 21:1300-1314. [PMID: 28026145 PMCID: PMC5487916 DOI: 10.1111/jcmm.13059] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20–40 years) and are classified as seminoma or non‐seminoma. TGCTs are commonly treated by orchiectomy and chemo‐ or radiotherapy. However, a subset of metastatic non‐seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small‐molecule inhibitor JQ1 in tumour therapy, which interferes with the function of ‘bromodomain and extraterminal (BET)’ proteins. JQ1‐treated TGCT cell lines display up‐regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down‐regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma‐like TCam‐2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs.
Collapse
Affiliation(s)
- Sina Jostes
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Martin Fellermeyer
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Simon Schneider
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - François Hafezi
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | | | - Valerie Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Matthias Geyer
- Institute of Innate Immunity, Department of Structural Immunology, University Medical School, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| |
Collapse
|
7
|
Abstract
Lysine acetylation is a key mechanism that regulates chromatin structure; aberrant acetylation levels have been linked to the development of several diseases. Acetyl-lysine modifications create docking sites for bromodomains, which are small interaction modules found on diverse proteins, some of which have a key role in the acetylation-dependent assembly of transcriptional regulator complexes. These complexes can then initiate transcriptional programmes that result in phenotypic changes. The recent discovery of potent and highly specific inhibitors for the BET (bromodomain and extra-terminal) family of bromodomains has stimulated intensive research activity in diverse therapeutic areas, particularly in oncology, where BET proteins regulate the expression of key oncogenes and anti-apoptotic proteins. In addition, targeting BET bromodomains could hold potential for the treatment of inflammation and viral infection. Here, we highlight recent progress in the development of bromodomain inhibitors, and their potential applications in drug discovery.
Collapse
|
8
|
Brd4 and HEXIM1: multiple roles in P-TEFb regulation and cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:232870. [PMID: 24592384 PMCID: PMC3925632 DOI: 10.1155/2014/232870] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/19/2013] [Indexed: 12/31/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) and hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) are two opposing regulators of the positive transcription elongation factor b (P-TEFb), which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb's transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.
Collapse
|