1
|
Bay LTE, Syljuåsen RG, Landsverk HB. A novel, rapid and sensitive flow cytometry method reveals degradation of promoter proximal paused RNAPII in the presence and absence of UV. Nucleic Acids Res 2022; 50:e89. [PMID: 35641102 PMCID: PMC9410883 DOI: 10.1093/nar/gkac434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
RNA polymerase II (RNAPII) is emerging as an important factor in DNA damage responses, but how it responds to genotoxic stress is not fully understood. We have developed a rapid and sensitive flow cytometry method to study chromatin binding of RNAPII in individual human cells through the cell cycle. Indicating enhanced transcription initiation at early timepoints, levels of RNAPII were increased at 15–30min after UV-induced DNA damage. This was particularly evident for the S5 phosphorylated form of RNAPII (pRNAPII S5), which is typically associated with promoter proximal pausing. Furthermore, degradation of pRNAPII S5 frequently occurs, as its levels on chromatin were strongly enhanced by the proteasome inhibitor MG132 with and without UV. Remarkably, inhibiting pause release with 5,6-dichloro-1-beta-ribo-furanosyl benzimidazole (DRB) further promoted UV-induced degradation of pRNAPII S5, suggesting enhanced initiation may lead to a phenomenon of ‘promoter proximal crowding’ resulting in premature termination via degradation of RNAPII. Moreover, pRNAPII S2 levels on chromatin were more stable in S phase of the cell cycle 2h after UV, indicating cell cycle specific effects. Altogether our results demonstrate a useful new method and suggest that degradation of promoter proximal RNAPII plays an unanticipated large role both during normal transcription and after UV.
Collapse
Affiliation(s)
- Lilli T E Bay
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Helga B Landsverk
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
2
|
Cuevas-Bermúdez A, Garrido-Godino AI, Navarro F. A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Parsa JY, Boudoukha S, Burke J, Homer C, Madhani HD. Polymerase pausing induced by sequence-specific RNA-binding protein drives heterochromatin assembly. Genes Dev 2018; 32:953-964. [PMID: 29967291 PMCID: PMC6075038 DOI: 10.1101/gad.310136.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
Abstract
In this study, Parsa et al. investigated the mechanisms underlying RNAi-independent heterochromatin assembly by the CTD–RRM protein Seb1 in S. pombe. They show that Seb1 promotes long-lived RNAPII pauses at pericentromeric repeat regions and that their presence correlates with the heterochromatin-triggering activities of the corresponding dg and dh DNA fragments, providing new insight into Seb1-mediated polymerase stalling as a signal necessary for heterochromatin nucleation. In Schizosaccharomyces pombe, transcripts derived from the pericentromeric dg and dh repeats promote heterochromatin formation via RNAi as well as an RNAi-independent mechanism involving the RNA polymerase II (RNAPII)-associated RNA-binding protein Seb1 and RNA processing activities. We show that Seb1 promotes long-lived RNAPII pauses at pericentromeric repeat regions and that their presence correlates with the heterochromatin-triggering activities of the corresponding dg and dh DNA fragments. Globally increasing RNAPII stalling by other means induces the formation of novel large ectopic heterochromatin domains. Such ectopic heterochromatin occurs even in cells lacking RNAi. These results uncover Seb1-mediated polymerase stalling as a signal necessary for heterochromatin nucleation.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Selim Boudoukha
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Jordan Burke
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Christina Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
4
|
RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, DEF1, Involves Sen1-Dependent and Polyadenylation Site-Dependent Termination. G3-GENES GENOMES GENETICS 2018; 8:2043-2058. [PMID: 29686108 PMCID: PMC5982831 DOI: 10.1534/g3.118.200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
Collapse
|
5
|
Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30490-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
6
|
Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 2015; 1:59-66. [PMID: 26448966 PMCID: PMC4593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Advances in the treatment of HIV infection have dramatically reduced the death rate from AIDS and improved the quality of life of many HIV-infected individuals. However, the possible long-term toxicity associated with antiretroviral therapy (ART), stigma and cost, all contribute to the necessity of finding a cure for HIV infection. In infected individuals taking ART, HIV persists in a small number of cells that can survive for the lifetime of the infected person. These persistently infected cells, usually referred as the 'reservoirs for HIV infection', are the main barriers to a cure. The diversity of the tissues and cellular types in which HIV persists, as well as the multiplicity of the molecular mechanisms contributing to HIV persistence, complicate the efforts to develop a safe, effective, and globally accessible cure for HIV. In this review, we summarise recent data that contribute to our understanding of HIV persistence during ART by addressing three questions pertaining to the HIV reservoir: (1) when is the reservoir established; (2) where is the reservoir maintained; and (3) how does the reservoir persist?
Collapse
Affiliation(s)
- Deanna A Kulpa
- Vaccine and Gene Therapy Institute Florida,
Port St Lucie,
Florida,
USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology,
Université de Montréal, Faculty of Medicine, and ,Centre de Recherche du CHUM,
Montréal,
Quebec,
Canada,Corresponding author: Nicolas Chomont,
Université de Montréal,
Centre de recherche du CHUM,
900 rue St-Denis, Tour Viger, R09 430,
Montréal,
QC,
H2X 0A,
Canada
| |
Collapse
|
7
|
Gehring AM, Santangelo TJ. Manipulating archaeal systems to permit analyses of transcription elongation-termination decisions in vitro. Methods Mol Biol 2015; 1276:263-79. [PMID: 25665569 DOI: 10.1007/978-1-4939-2392-2_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription elongation by multisubunit RNA polymerases (RNAPs) is processive, but neither uniform nor continuous. Regulatory events during elongation include pausing, backtracking, arrest, and transcription termination, and it is critical to determine whether the absence of continued synthesis is transient or permanent. Here we describe mechanisms to generate large quantities of stable archaeal elongation complexes on a solid support to permit (1) single-round transcription, (2) walking of RNAP to any defined template position, and (3) discrimination of transcripts that are associated with RNAP from those that are released to solution. This methodology is based on untagged proteins transcribing biotin- and digoxigenin-labeled DNA templates in association with paramagnetic particles.
Collapse
Affiliation(s)
- Alexandra M Gehring
- Department of Biochemistry and Molecular Biology, 383 MRB, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
8
|
Chen Y, Zhang L, Estarás C, Choi SH, Moreno L, Karn J, Moresco JJ, Yates JR, Jones KA. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Genes Dev 2014; 28:2261-75. [PMID: 25319827 PMCID: PMC4201287 DOI: 10.1101/gad.250449.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P-RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P-S2P transition at the integrated HIV-1 promoter.
Collapse
Affiliation(s)
- Yupeng Chen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lirong Zhang
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Conchi Estarás
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Luis Moreno
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - James J Moresco
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
9
|
Stadelmayer B, Micas G, Gamot A, Martin P, Malirat N, Koval S, Raffel R, Sobhian B, Severac D, Rialle S, Parrinello H, Cuvier O, Benkirane M. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat Commun 2014; 5:5531. [PMID: 25410209 PMCID: PMC4263189 DOI: 10.1038/ncomms6531] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/10/2014] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNAPII) pausing/termination shortly after initiation is a hallmark of gene regulation. Here, we show that negative elongation factor (NELF) interacts with Integrator complex subunits (INTScom), RNAPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both human immunodeficiency virus type 1 promoter and genome-wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated INTScom subunits. Interestingly, in addition to controlling RNAPII pause-release INTS11 catalytic subunit of the INTScom is required for RNAPII processivity. Finally, INTScom target genes are enriched in human immunodeficiency virus type 1 transactivation response element/NELF binding element and in a 3' box sequence required for small nuclear RNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pause-release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle. RNA polymerase II (RNAPII) pausing at transcriptional start sites is an important element of gene transcription regulation. Here, the authors implicate the Integrator complex as a regulator of RNAPII pause-release and completion of mRNA synthesis at a subset of the negative elongation factor target genes.
Collapse
Affiliation(s)
- Bernd Stadelmayer
- 1] Institute of Human Genetics, CNRS UPR1142, Laboratory of Molecular Virology; MGX-Montpellier GenomiX, 141 rue de la Cardonille, Montpellier 34396, France [2] LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France [3] INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse 31300, France [4] IGF, MGX-Montpellier GenomiX, France
| | - Gaël Micas
- LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France
| | - Adrien Gamot
- LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France
| | - Pascal Martin
- 1] LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France [2] INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse 31300, France
| | - Nathalie Malirat
- Institute of Human Genetics, CNRS UPR1142, Laboratory of Molecular Virology; MGX-Montpellier GenomiX, 141 rue de la Cardonille, Montpellier 34396, France
| | - Slavik Koval
- Institute of Human Genetics, CNRS UPR1142, Laboratory of Molecular Virology; MGX-Montpellier GenomiX, 141 rue de la Cardonille, Montpellier 34396, France
| | - Raoul Raffel
- LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France
| | - Bijan Sobhian
- Institute of Human Genetics, CNRS UPR1142, Laboratory of Molecular Virology; MGX-Montpellier GenomiX, 141 rue de la Cardonille, Montpellier 34396, France
| | | | | | | | - Olivier Cuvier
- 1] LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France [2] INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse 31300, France [3] IGF, MGX-Montpellier GenomiX, France
| | - Monsef Benkirane
- 1] Institute of Human Genetics, CNRS UPR1142, Laboratory of Molecular Virology; MGX-Montpellier GenomiX, 141 rue de la Cardonille, Montpellier 34396, France [2] LBME-CNRS, Cell Cycle Chromatin Dynamics Laboratory. University Paul Sabatier, Toulouse 31061, France [3] INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse 31300, France [4] IGF, MGX-Montpellier GenomiX, France
| |
Collapse
|