Rho-dependent transcription termination in bacteria recycles RNA polymerases stalled at DNA lesions.
Nat Commun 2019;
10:1207. [PMID:
30872584 PMCID:
PMC6418286 DOI:
10.1038/s41467-019-09146-5]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/14/2019] [Indexed: 01/25/2023] Open
Abstract
In bacteria, transcription-coupled repair of DNA lesions initiates after the Mfd protein removes RNA polymerases (RNAPs) stalled at the lesions. The bacterial RNA helicase, Rho, is a transcription termination protein that dislodges the elongation complexes. Here, we show that Rho dislodges the stalled RNAPs at DNA lesions. Strains defective in both Rho and Mfd are susceptible to DNA-damaging agents and are inefficient in repairing or propagating UV-damaged DNA. In vitro transcription assays show that Rho dissociates the stalled elongation complexes at the DNA lesions. We conclude that Rho-dependent termination recycles stalled RNAPs, which might facilitate DNA repair and other DNA-dependent processes essential for bacterial cell survival. We surmise that Rho might compete with, or augment, the Mfd function.
In bacteria, the Rho protein dislodges elongation complexes to terminate transcription, and the Mfd protein removes RNA polymerases (RNAPs) stalled at DNA lesions. Here, Jain et al. show that Rho also dissociates stalled RNAPs at DNA lesions, which may facilitate DNA repair and other DNA-dependent processes.
Collapse