1
|
Kushugulova A, Forslund SK, Costea PI, Kozhakhmetov S, Khassenbekova Z, Urazova M, Nurgozhin T, Zhumadilov Z, Benberin V, Driessen M, Hercog R, Voigt AY, Benes V, Kandels-Lewis S, Sunagawa S, Letunic I, Bork P. Metagenomic analysis of gut microbial communities from a Central Asian population. BMJ Open 2018; 8:e021682. [PMID: 30056386 PMCID: PMC6067398 DOI: 10.1136/bmjopen-2018-021682] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Changes in the gut microbiota are increasingly recognised to be involved in many diseases. This ecosystem is known to be shaped by many factors, including climate, geography, host nutrition, lifestyle and medication. Thus, knowledge of varying populations with different habits is important for a better understanding of the microbiome. DESIGN We therefore conducted a metagenomic analysis of intestinal microbiota from Kazakh donors, recruiting 84 subjects, including male and female healthy subjects and metabolic syndrome (MetS) patients aged 25-75 years, from the Kazakh administrative centre, Astana. We characterise and describe these microbiomes, the first deep-sequencing cohort from Central Asia, in comparison with a global dataset (832 individuals from five countries on three continents), and explore correlations between microbiota, clinical and laboratory parameters as well as with nutritional data from Food Frequency Questionnaires. RESULTS We observe that Kazakh microbiomes are relatively different from both European and East Asian counterparts, though similar to other Central Asian microbiomes, with the most striking difference being significantly more samples falling within the Prevotella-rich enterotype, potentially reflecting regional diet and lifestyle. We show that this enterotype designation remains stable within an individual over time in 82% of cases. We further observe gut microbiome features that distinguish MetS patients from controls (eg, significantly reduced Firmicutes to Bacteroidetes ratio, Bifidobacteria and Subdoligranulum, alongside increased Prevotella), though these overlap little with previously published reports and thus may reflect idiosyncrasies of the present cohort. CONCLUSION Taken together, this exploratory study describes gut microbiome data from an understudied population, providing a starting point for further comparative work on biogeography and research on widespread diseases. TRIAL REGISTRATION NUMBER ISRCTN37346212; Post-results.
Collapse
Affiliation(s)
| | - Sofia K Forslund
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
- ECRC, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Centre, a cooperation of Charité-Universitätsmedizin and the Max-Delbrück Centre, Berlin, Berlin, Germany
| | - Paul Igor Costea
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | | | | | - Maira Urazova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Talgat Nurgozhin
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Valery Benberin
- Medical Center under the Office of the Kazakh President, Astana, Kazakhstan
| | - Marja Driessen
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Rajna Hercog
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Anita Yvonne Voigt
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Vladimir Benes
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Stefanie Kandels-Lewis
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Shinichi Sunagawa
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ivica Letunic
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
| | - Peer Bork
- The European Molecular Biology Laboratory (EMBL), Structural and Computational Biology, Heidelberg, Germany
- ECRC, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Choi YH, Kim JH, Lee BE, Hong YC. Urinary benzene metabolite and insulin resistance in elderly adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 482-483:260-8. [PMID: 24657371 DOI: 10.1016/j.scitotenv.2014.02.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Benzene is a volatile organic compound present in traffic-related and indoor air pollution. It is of particular concern since it is known to induce oxidative stress, which can affect insulin resistance (IR). We therefore examined the association between exposure to environmental benzene and IR in the elderly. STUDY DESIGN Between 2008 and 2010, benzene metabolite levels (urinary trans,trans-muconic acid (t,t-MA)) and homeostatic model assessment index (HOMA-IR) were repeatedly measured in 505 adults aged ≥60 years. Linear mixed-effect models and marginal logistic models were used to evaluate associations of t,t-MA concentration with HOMA-IR score and elevated IR, defined as HOMA-IR ≥2.6. RESULTS After adjustment for sociodemographic and behavioral factors, environmental co-exposures, and metabolic conditions, quartile levels of urinary t,t-MA demonstrated a dose-dependent association with elevated IR (p-trend<0.001) and the level of oxidative stress estimated by urinary malondialdehyde (p-trend<0.001). As compared to the lowest quartile, the upper quartiles of t,t-MA (t,t-MA concentration >0.017mg/g CR) were associated with elevated IR [odds ratio=Q2: 2.00 (95% confidence interval (CI): 1.16-3.46); Q3: 3.33 (95% CI: 1.90-5.84); Q4: 2.07 (95% CI: 1.02-4.22)]. CONCLUSION Urinary benzene at levels currently observed in the urban elderly population is associated with IR, independent of traditional risk factors. Reduction of community-level exposure to benzene is therefore important for the effective prevention of IR in older adults.
Collapse
Affiliation(s)
- Yoon-Hyeong Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Hee Kim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Bo-Eun Lee
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|