1
|
Sakayanathan P, Loganathan C, Thayumanavan P. Protection of pancreatic beta cells against high glucose-induced toxicity by astaxanthin-s-allyl cysteine diester: alteration of oxidative stress and apoptotic-related protein expression. Arch Physiol Biochem 2024; 130:316-324. [PMID: 35482540 DOI: 10.1080/13813455.2022.2064878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
Abstract
Purpose: High glucose (HG)-induced oxidative stress is associated with apoptosis in pancreatic β-cells. The protective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against HG-induced oxidative stress in pancreatic β-cells (βTC-tet cell line) in in vitro was studied.Materials and Methods: βTC-tet cell line was exposed to HG in the presence and absence of AST-SAC. Various parameters such as cell viability, reactive oxygen species generation, mitochondrial membrane potential, DNA fragmentation and expression of proteins involved in apoptosis [p53, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), cytochrome c and caspase 3] were studied.Results: Pre-treatment of βTC-tet cells with AST-SAC (4, 8 and 12 μg/ml) in the presence of HG (25 mM) protected the viability of the cells in a dose-dependent manner. AST-SAC treatment mitigated the oxidative stress thereby preventing the mitochondrial dysfunction, DNA damage and apoptosis in βTC-tet cells against HG toxicity. Treatment with AST-SAC prevented the increased expression of p53 under HG conditions. Further, AST-SAC treatment maintained the level of pro-apoptotic (Bax, cleaved caspase-3 and cytochrome c) and anti-apoptotic (Bcl-2) proteins to that of the control level under HG exposed conditions in βTC-tet cells.Conclusion: Altogether, AST-SAC alleviated HG-induced oxidative damage and apoptosis in pancreatic β-cells by enhancing the antioxidant status and altering apoptotic-related protein expression.
Collapse
Affiliation(s)
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, India
- Research and Development center, Bioinnov Solutions LLP, Salem, India
| | | |
Collapse
|
2
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Archana TM, Soumya K, James J, Sudhakaran S. Root extracts of Anacardium occidentale reduce hyperglycemia and oxidative stress in vitro. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00293-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hyperglycemia is the hallmark of diabetes, and the associated oxidative stress is a major concern that invites an array of diabetic complications. The traditional practices of medicare are of great, current interest due to the high cost and side effects of conventional diabetic medications. The present in vitro study focuses on evaluating the potential of various A. occidentale root extracts for their antihyperglycemic and antioxidant potentials.
Materials and methods
The four different solvent extracts petroleum ether (PEAO), chloroform (CHAO), ethyl acetate (EAAO), and 80 % methanol (80 % MAO) of A. occidentale roots were evaluated for their total phenolic, flavonoid, and antioxidant capacity. Using MIN6 pancreatic β-cells, the cytotoxicity of the extracts was evaluated by MTT assay and the antidiabetic potential by quantifying the insulin levels by ELISA at a higher concentration of glucose. The effect of 80 % MAO on INS gene expression was determined by qRT PCR analysis.
Results
Among the four different solvent extracts of A. occidentale roots, 80 % MAO showed the highest concentration of phenolics (437.33 ± 0.03 µg GAE/mg), CHAO to be a rich source of flavonoids (46.04 ± 0.1 µg QE/mg) and with the highest total antioxidant capacity (1865.33 ± 0.09 µg AAE/ mg). Evaluation of the free radical scavenging and reducing properties of the extracts indicated 80 % MAO to exhibit the highest activity. The MTT assay revealed the least cytotoxicity of all four extracts. 80 % MAO enhanced INS up-regulation as well as insulin secretion even under high glucose concentration (27mM).
Conclusions
The present study demonstrated that the A. occidentale root extracts have effective antihyperglycemic and antioxidative properties, together with the potential of normalizing the insulin secretory system of β-cells. Above mentioned properties have to be studied further by identifying the active principles of A. occidentale root extracts and in vivo effects. The prospect of the present study is identifying drug leads for better management of diabetes from the A. occidentale root extracts.
Graphical abstract
Collapse
|
4
|
Pillai SS, Mini S. Attenuation of high glucose induced apoptotic and inflammatory signaling pathways in RIN-m5F pancreatic β cell lines by Hibiscus rosa sinensis L. petals and its phytoconstituents. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:8-17. [PMID: 30120944 DOI: 10.1016/j.jep.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hibiscus rosa sinensis petals possess wide range of pharmacological properties, with remarkable nutritional values. Diabetes is one of the most devastating diseases affecting the world today. A few side effects associated with the use of insulin and oral hypoglycemic agents prompted us to search new bioactive principles from antidiabetic plants used in traditional medicine. AIM OF THE STUDY The anti-diabetic therapeutic potential of the flavonoids rich ethyl acetate fraction of Hibiscus rosa sinensis petals (EHRS) was evaluated. MATERIALS AND METHODS High glucose (25 mM) induced apoptotic model of diabetes in RIN-m5F pancreatic β-cells was used for the study. RESULTS EHRS elevated the release of insulin in pancreatic cells and modulated apoptotic signaling cascades. It significantly reduced NF-κB nuclear translocation, thereby down-regulated the expressions of major inflammatory cytokines and up-regulated expressions of pancreatic β-cell functional genes such as, foxO-1, Ucn-3, Pdx-1, MafA and Nkx6.1. On comparison with its constituent phytochemicals, superior protective effect shown by EHRS may be due to the additive action of these phytoconstituents. CONCLUSIONS Results of the present study suggest hibiscus petals as a natural source and functional food of potential therapeutics to protect pancreatic β-cells in experimental diabetes mellitus.
Collapse
Affiliation(s)
- Sneha S Pillai
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India.
| | - S Mini
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India.
| |
Collapse
|
5
|
Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim GY, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2016; 39:399-406. [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2‑specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal‑regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO‑1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Kyoung Seob Song
- Department of Physiology, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-737, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
6
|
Choi EO, Park C, Hwang HJ, Hong SH, Kim GY, Cho EJ, Kim WJ, Choi YH. Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. Int J Oncol 2016; 49:1009-18. [PMID: 27571890 DOI: 10.3892/ijo.2016.3606] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
Baicalein is a flavonoid derived originally from the root of Scutellaria baicalensis Georgi, which has been used in Oriental medicines for treating various diseases. Although this compound has been reported to have anticancer activities in several human cancer cell lines, the therapeutic effects of baicalein on human bladder cancer and its mechanisms of action have not been extensively studied. This study investigated the proapoptotic effects of baicalein in human bladder cancer 5637 cells. For this study, cell viability and apoptosis were evaluated using the 3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue dye exclusion assay 4,6-diamidino-2-phenylindole staining, and flow cytometry. Measurements of the mitochondrial membrane potential (MMP), caspase activity assays and western blots were conducted to determine whether 5637 cell death occurred by apoptosis. Treatment with baicalein resulted in a concentration-dependent growth inhibition coupled with apoptosis induction, as indicated by the results of nuclei morphology examination and flow cytometry analyses. The induction of the apoptotic cell death of 5637 cells by baicalein exhibited a correlation with the downregulation of members of the inhibitor of apoptosis protein (IAP) family, including cIAP-1 and cIAP-2, and the activation of caspase-9 and -3 accompanied by proteolytic degradation of poly(ADP-ribose)-polymerase. The study also showed that baicalein decreases the expression of the proapoptotic protein Bax, increases antiapoptotic Bcl-2 expression, and noticeably aggravates the loss of MMP. Concomitantly, the data showed that baicalein increases the levels of death receptors and their associated ligands and enhances the activation of caspase-8 and truncation of Bid. However, the pan-caspase inhibitor can reverse baicalein-induced apoptosis, demonstrating that it is a caspase-dependent pathway. Moreover, it was found that baicalein can induce the production of reactive oxygen species (ROS) and that pretreatment with the antioxidant N-acetyl-L-cysteine significantly attenuates the baicalein effects on the loss of MMP and activation of caspase. In addition, the blocking of ROS generation decreases the apoptotic activity and antiproliferative effect of baicalein, indicating that baicalein induces apoptosis of 5637 cells through the ROS-dependent activation of caspases.
Collapse
Affiliation(s)
- Eun-Ok Choi
- Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Hye-Jin Hwang
- Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun-Ju Cho
- Department of Food and Nutrition, College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-763, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
7
|
Alshatwi AA, Subash-Babu P. Aloe-Emodin Protects RIN-5F (Pancreatic β-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3. Biomol Ther (Seoul) 2016; 24:49-56. [PMID: 26759701 PMCID: PMC4703352 DOI: 10.4062/biomolther.2015.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic β-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-γ, IL-1β,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE (20 μM) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - P Subash-Babu
- Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Park HY, Choi IW, Kim GY, Kim BW, Kim WJ, Choi YH. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Wang C, Zou S, Cui Z, Guo P, Meng Q, Shi X, Gao Y, Yang G, Han Z. Zerumbone protects INS-1 rat pancreatic beta cells from high glucose-induced apoptosis through generation of reactive oxygen species. Biochem Biophys Res Commun 2015; 460:205-9. [DOI: 10.1016/j.bbrc.2015.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 02/08/2023]
|
10
|
Kang JS, Choi IW, Han MH, Lee DS, Kim GY, Hwang HJ, Kim BW, Kim CM, Yoo YH, Choi YH. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2. Mar Drugs 2015; 13:2666-79. [PMID: 25939035 PMCID: PMC4446599 DOI: 10.3390/md13052666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023] Open
Abstract
This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME) prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ji Sook Kang
- Blue-Bio Industry RIC and Anti-Aging Research Center, Dongeui University, Busan 614-714, Korea.
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-756, Korea.
| | - Min Ho Han
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Korea.
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Korea.
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea.
| | - Hye Jin Hwang
- Blue-Bio Industry RIC and Anti-Aging Research Center, Dongeui University, Busan 614-714, Korea.
- Department of Food and Nutrition, College of Natural Sciences & Human Ecology, Dongeui University, Busan 614-714, Korea.
| | - Byung Woo Kim
- Blue-Bio Industry RIC and Anti-Aging Research Center, Dongeui University, Busan 614-714, Korea.
- Department of Life Science and Biotechnology, College of Natural Sciences & Human Ecology, Dongeui University, Busan 614-714, Korea.
| | - Cheol Min Kim
- Department of Biochemistry, Busan National University College of Medicine, Yangsan 626-870, Korea.
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine & Mitochondria Hub Regulation Center, Busan 602-714, Korea.
| | - Yung Hyun Choi
- Blue-Bio Industry RIC and Anti-Aging Research Center, Dongeui University, Busan 614-714, Korea.
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Korea.
| |
Collapse
|