1
|
Jacob J, Aggarwal A, Bhattacharyya S, Sahni D, Sharma V, Aggarwal A. Fisetin and resveratrol exhibit senotherapeutic effects and suppress cellular senescence in osteoarthritic cartilage-derived chondrogenic progenitor cells. Eur J Pharmacol 2025; 997:177573. [PMID: 40189080 DOI: 10.1016/j.ejphar.2025.177573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Chondrogenic progenitor cells (CPCs) in the articular cartilage of knee osteoarthritis (OA) patients exhibit cellular senescence and its associated secretory phenotype (SASP). We hypothesized that the senescence of CPCs can be suppressed using natural compounds. This study aimed to evaluate the senotherapeutic effects of fisetin and resveratrol to suppress the cellular senescence in CPCs. In vitro, pre-treatment of CPCs with increasing doses of fisetin and resveratrol (5μM-100μM) were non-cytotoxic, decreased the senescence index and dampened the expression of cellular senescence markers, p53 and p38MAPK. Additionally, SASP-related genes and proteins (MMP-9, MMP13) and inflammatory mediators (IL-1β, TGF-β, and IL-6) were downregulated. Further, in silico analysis confirmed the high binding affinity of these natural drugs to OA-related proteins. Overall, fisetin and resveratrol dampened the senescence of CPCs by downregulating the p53 effector protein and effectively reducing the SASP. From this study, natural compound candidates proved to be potential drug candidates that suppress senescence via p53.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Aditya Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Kuang S, Liu L, Hu Z, Luo M, Fu X, Lin C, He Q. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int J Biol Macromol 2023; 228:582-593. [PMID: 36563826 DOI: 10.1016/j.ijbiomac.2022.12.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Min Luo
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
3
|
Kim OK, Kim D, Lee M, Park SH, Jung J, Lee J. Krill Oil Attenuates Inflammation in Monosodium Iodoacetate-Induced Osteoarthritic Rats, SW982 Synovial Cell Line, and Primary Chondrocytes. J Med Food 2022; 25:239-250. [PMID: 35235416 DOI: 10.1089/jmf.2021.k.0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effects of krill oil (FJH-KO) in monoiodoacetate (MIA)-induced osteoarthritis in rat models, and H2O2- or lipopolysaccharide (LPS)-treated primary chondrocytes and the SW982 synovial cell line. We found that 150 mg/kg b.w. FJH-KO supplementation increased running speed, stride, and foot pressure in MIA-induced osteoarthritic rats. In the H2O2-treated SW982 synovial cell line and primary chondrocytes, FJH-KO treatment prevented cell death and suppressed matrix degradation by increasing the levels of anabolic factors of cartilage tissue, including aggrecan, collagen type Ⅰ, collagen type Ⅱ, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-3, and decreasing those of catabolic factors of cartilage tissue, including phosphorylation of Smad, MMP-3, and MMP-13. In addition, FJH-KO treatment suppressed the activation of inflammation and apoptosis pathways in the LPS-treated SW982 synovial cell line and primary chondrocytes. We suggest that FJH-KO supplementation may help prevent osteoarthritis progression because of its direct effects on inflammation and apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Division of Food and Nutrition, Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Jaeeun Jung
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gyeonggi, Korea.,Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Hizikia fusiformis: Pharmacological and Nutritional Properties. Foods 2021; 10:foods10071660. [PMID: 34359532 PMCID: PMC8306711 DOI: 10.3390/foods10071660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, there has been no comprehensive review of the nutritional and pharmacological properties of H. fusiformis. The aim of this systematic review was to provide detailed information from the published literature on the nutritional and pharmacological properties of H. fusiformis. A comprehensive online search of the literature was conducted by accessing databases, such as PubMed, SpringerLink, ScienceDirect, and Google Scholar, for published studies on the nutritional and pharmacological properties of H. fusiformis between 2010 and 2021. A total of 916 articles were screened from all the databases using the preferred reporting items for systematic reviews and meta-analyses method. Screening based on the setdown criteria resulted in 59 articles, which were used for this review. In this review, we found that there has been an increase in the number of publications on the pharmacological and nutritional properties of H. fusiformis over the last 10 years. In the last 10 years, studies have focused on the proximate, mineral, polysaccharide, and bioactive compound composition, and pharmacological properties, such as antioxidant, anticancer, antitumor, anti-inflammatory, photoprotective, neuroprotective, antidiabetic, immunomodulatory, osteoprotective, and gastroprotective properties of H. fusiformis extracts. Overall, further studies and strategies are required to develop H. fusiformis as a promising resource for the nutrition and pharmacological industries.
Collapse
|
5
|
Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr Polym 2020; 228:115381. [PMID: 31635744 DOI: 10.1016/j.carbpol.2019.115381] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023]
Abstract
Sargassum fusiforme polysaccharides, acidic water-soluble polysaccharides extract from Sargassum fusiforme, are mainly composed of alginic acid, fucoidan and laminaran. Alginic acid is carboxyl-containing polysaccharide formed by joining β-D-mannuronic acid and α-L-guluronic acid through β-(1→4)/α-(1→4) glycosidic bond. Fucoidan, a natural water-soluble sulfated heteropolysaccharide with fucose and sulfuric acid groups as the core structure, is mainly linked by L-fucose through α-(1→3) glycosidic bond and has the strongest biological activity. Laminaran is mainly composed of β-D-glucose through β-(1→3) glycosidic bond linkage. Sargassum fusiforme polysaccharides have a variety of pharmacological activities, including antioxidant, anti-tumor, promoting immunity, anti-aging, prompting bone growth, lowering blood glucose, anti-coagulation, anti-virus, anti-bacteria, anti-fatigue, promoting growth and development, and skin protection. These activities are closely related to the functions of fucoidan in Sargassum fusiforme polysaccharides, which fucoidan is able to strengthen immune system and antioxidation in human body. In this review, the composition, the isolation and purification, and the biological activities of Sargassum fusiforme polysaccharides are discussed and can bereference for further study.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yingxue Tang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Jeong JW, Lee HH, Kim J, Choi EO, Hwang-Bo H, Kim HJ, Kim MY, Ahn KI, Kim GY, Lee KW, Kim KY, Kim SG, Hong SH, Park C, Cha HJ, Choi YH. Mori Folium water extract alleviates articular cartilage damages and inflammatory responses in monosodium iodoacetate‑induced osteoarthritis rats. Mol Med Rep 2017; 16:3841-3848. [PMID: 29067461 PMCID: PMC5646961 DOI: 10.3892/mmr.2017.7075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023] Open
Abstract
Mori folium, the leaf of Morus alba L. (Moraceae), has been widely used in traditional medicine for the treatment of various diseases. It has been recently reported that Mori folium possesses potential chondroprotective effects in interleukin (IL)-1β-stimulated human chondrocytes; however, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. In this study, as part of an ongoing screening program to evaluate the anti-osteoarthritic potential of Mori folium, the protective effects of a water extract of Mori folium (MF) on cartilage degradation and inflammatory responses in a monosodium iodoacetate (MIA)-induced OA rat model were evaluated. The results demonstrated that administration of MF had a tendency to attenuate the damage to articular cartilage induced by MIA, as determined by knee joint swelling and the histological grade of OA. The elevated levels of matrix metalloproteinases-13 and two bio-markers for the diagnosis and progression of OA, such as the cartilage oligomeric matrix protein and C-telopeptide of type II collagen, were markedly ameliorated by MF administration in MIA-induced OA rats. In addition, MF significantly suppressed the production of pro-inflammatory cytokines, including IL-1β, IL-6 and tumor necrosis factor-α. MF also effectively inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, thus inhibiting the release of NO and prostaglandin E2. Although further work is required to fully understand the critical role and clinical usefulness, these findings indicate that MF may be a potential therapeutic option for the treatment of OA.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Hye Hyeon Lee
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Jongsik Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 602‑702, Republic of Korea
| | - Eun-Ok Choi
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Hyun Hwang-Bo
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Hong Jae Kim
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Min Young Kim
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Kyu Im Ahn
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690‑756, Republic of Korea
| | - Ki Won Lee
- Research Institute, Bio‑Port Korea, Inc., Marine Bio‑industry Development Center, Busan 619‑912, Republic of Korea
| | - Ki Young Kim
- Research Institute, Bio‑Port Korea, Inc., Marine Bio‑industry Development Center, Busan 619‑912, Republic of Korea
| | - Sung Goo Kim
- Research Institute, Bio‑Port Korea, Inc., Marine Bio‑industry Development Center, Busan 619‑912, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614‑052, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614‑714, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602‑702, Republic of Korea
| | - Yung Hyun Choi
- Open Laboratory for Muscular and Skeletal Disease and Anti‑Aging Research Center, Dongeui University, Busan 614‑714, Republic of Korea
| |
Collapse
|
7
|
Jeong JW, Kim J, Choi EO, Kwon DH, Kong GM, Choi IW, Kim BH, Kim GY, Lee KW, Kim KY, Kim SG, Choi YW, Hong SH, Park C, Choi YH. Schisandrae Fructus ethanol extract ameliorates inflammatory responses and articular cartilage damage in monosodium iodoacetate-induced osteoarthritis in rats. EXCLI JOURNAL 2017; 16:265-277. [PMID: 28507472 PMCID: PMC5427464 DOI: 10.17179/excli2017-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/03/2017] [Indexed: 01/22/2023]
Abstract
Schisandrae Fructus, the fruit of Schisandra chinensis (Turcz.) Baill., is widely used in traditional medicine for the treatment of a number of chronic diseases. Although, Schisandrae Fructus was recently reported to attenuate the interleukin (IL)-1β-induced inflammatory response in chondrocytes in vitro, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. Therefore, we investigated the effects of the ethanol extract of Schisandrae Fructus (SF) on inflammatory responses and cartilage degradation in a monosodium iodoacetate (MIA)-induced OA rat model. Our results demonstrated that administration with SF had a tendency to attenuate MIA-induced damage of articular cartilage as determined by a histological grade of OA. SF significantly suppressed the production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in MIA-induced OA rats. SF also effectively inhibited expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, thereby inhibiting the release of NO and prostaglandin E2. In addition, the elevated levels of matrix metalloproteinases-13 and two biomarkers for diagnosis and progression of OA, such as cartilage oligomeric matrix protein and C-telopeptide of type II collagen, were markedly ameliorated by SF administration. These findings indicate that SF could be a potential candidate for the treatment of OA.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| | - Jongsik Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 602-702, Republic of Korea
| | - Eun Ok Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| | - Da Hye Kwon
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| | - Gyu Min Kong
- Department of Orthopaedic Surgery, College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Bum Hoi Kim
- Department of Anatomy, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Ki Won Lee
- Research Institute, Bio-Port Korea INC, MarineBio-industry Development Center, Busan 619-912, Republic of Korea
| | - Ki Young Kim
- Research Institute, Bio-Port Korea INC, MarineBio-industry Development Center, Busan 619-912, Republic of Korea
| | - Sung Goo Kim
- Research Institute, Bio-Port Korea INC, MarineBio-industry Development Center, Busan 619-912, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Sciences, Pusan National University, Miryang 627-706, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
8
|
Cheng W, Jing J, Wang Z, Wu D, Huang Y. Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection. Nutrients 2017; 9:nu9030263. [PMID: 28287423 PMCID: PMC5372926 DOI: 10.3390/nu9030263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/03/2017] [Indexed: 12/30/2022] Open
Abstract
This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA.
Collapse
Affiliation(s)
- Wendan Cheng
- Department of Orthopedics, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230601, China.
- Department of Orthopedics, Lu'an People's Hospital Affiliated to Anhui Medical University, Lu'an 237000, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230601, China.
| | - Zhen Wang
- Department of Orthopedics, The Peoples Hospital of Luhe Affiliated to Yangzhou University Medical Academy, Nanjing 211500, China.
| | - Dongying Wu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou 221000, China.
| | - Yumin Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|