1
|
Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022; 14:1576. [PMID: 36015202 PMCID: PMC9416534 DOI: 10.3390/pharmaceutics14081576] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has long been regarded as one of the world's most fatal diseases, claiming the lives of countless individuals each year. Stomach cancer is a prevalent cancer that has recently reached a high number of fatalities. It continues to be one of the most fatal cancer forms, requiring immediate attention due to its low overall survival rate. Early detection and appropriate therapy are, perhaps, of the most difficult challenges in the fight against stomach cancer. We focused on positive tactics for stomach cancer therapy in this paper, and we went over the most current advancements and progressions of nanotechnology-based systems in modern drug delivery and therapies in great detail. Recent therapeutic tactics used in nanotechnology-based delivery of drugs aim to improve cellular absorption, pharmacokinetics, and anticancer drug efficacy, allowing for more precise targeting of specific agents for effective stomach cancer treatment. The current review also provides information on ongoing research aimed at improving the curative effectiveness of existing anti-stomach cancer medicines. All these crucial matters discussed under one overarching title will be extremely useful to readers who are working on developing multi-functional nano-constructs for improved diagnosis and treatment of stomach cancer.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, Karnataka, India;
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - Mohammad Yousuf Ansari
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University ), Mullana, Ambala 133203, Haryana, India;
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| |
Collapse
|
2
|
Yang H, Zhang WH, Ge R, Peng BQ, Chen XZ, Yang K, Liu K, Chen XL, He D, Liu JP, Zhang WW, Qin Y, Zhou ZG, Hu JK. Application of Gross Tissue Response System in Gastric Cancer After Neoadjuvant Chemotherapy: A Primary Report of a Prospective Cohort Study. Front Oncol 2021; 11:585006. [PMID: 34900661 PMCID: PMC8651877 DOI: 10.3389/fonc.2021.585006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE We previously established a gross tissue response (GTR) system to evaluate the intraoperative response of perigastric tissue in patients with gastric cancers to neoadjuvant chemotherapy. This prospective cohort study aims to confirm the relationship between gross tissue response and clinicopathological characteristics and explore the possibility of using the GTR system to predict the difficulty of surgery and the occurrence of postoperative complications within 30 days. METHODS A total of 102 patients with gastric cancer from January 2019 to April 2020 were enrolled in this study. The degrees of fibrosis, edema, and effusion in the perigastric tissues were assessed intraoperatively according to the GTR system. We systematically analyzed the relations between GTR and clinicopathological characteristics, and then a prediction model that includes GTR was established to predict the difficulty of surgery and the occurrence of postoperative complications within 30 days. RESULTS Finally, the study included 71 male patients and 31 female patients. The patients had an average age of 58.79 ± 1.03 years, BMI of 22.89 ± 0.29, and tumor diameter of 4.50 ± 0.27 cm. Among these patients, 17 underwent laparoscopic gastrectomy, 85 underwent open gastrectomy, the average operation time was 294.63 ± 4.84 minutes, and the mean volume of intraoperative blood loss was 94.65 ± 5.30 ml. The overall 30-day postoperative complication rate was 19.6% (20/102). The total GTR was significantly related to the primary tumor stage, operation time and 30-day postoperative complication rate (p<0.05). Edema and effusion were significantly related to intraoperative blood loss (p<0.05). The logistic regression analysis identified that the total GTR score (score: 4-9, OR 2.888, 95% CI: 1.035-8.062, p = 0.043) was an independent risk factor for postoperative complications within 30 days, and the total GTR score (score 4-9, OR 3.32, 95% CI 1.219-9.045, p=0.019) was also an independent risk factor for operation time. The AUC of the total GTR score for predicting postoperative complications within 30 days was 0.681. CONCLUSION According to the results of the present study, the gross tissue response (GTR) system is an effective tool that may be used to predict the risk of a difficult operation after neoadjuvant chemotherapy and postoperative complications. Although neoadjuvant chemotherapy improves the therapeutic effect, it also increases the risk of surgical trauma and postoperative complications. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT03791268.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei-Han Zhang
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Rui Ge
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bo-Qiang Peng
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin-Zu Chen
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kun Yang
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kai Liu
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiao-Long Chen
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Ping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Wei Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery and Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian-Kun Hu
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Song L, Wang XY, He XF. A 5-Gene Prognostic Combination for Predicting Survival of Patients with Gastric Cancer. Med Sci Monit 2019; 25:6313-6320. [PMID: 31422414 PMCID: PMC6713029 DOI: 10.12659/msm.914815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The aim of the study was to identify a multigene prognostic factor in patients with gastric cancer (GC). Material/Methods Random survival forest (RSF) was performed to screen survival-related genes and develop a multigene combination based on the cumulative hazard function of each GC patient in TCGA-STAD and GSE15459. Kaplan-Meier curve and univariate and multivariable Cox proportional hazards regression model were applied to evaluate the prognostic performance of the 5-gene combination. C-index was used to compare the prognostic performance of the 5-gene combination and another 9-gene signature in GC. Gene set enrichment analysis (GSEA) was conducted. Results We obtained 19 survival-related genes through univariate Cox proportional hazards analysis in the training set, 5 of which were identified and were used to develop a 5-gene combination through RSF. Patients in the 5-gene combination low-risk group had better overall survival (OS) than those in the 5-gene combination high-risk group, and the 5-gene combination was demonstrated to be an independent prognostic factor in patients with GC. The 5-gene combination outperformed the 9-gene signature in predicting the OS of GC patients, and it might affect the prognosis of GC patients through E2F signaling, MYC signaling, and G2M checkpoint. Conclusions We introduce a 5-gene combination that can predict the survival of GC patients and might be an independent prognostic factor in GC.
Collapse
Affiliation(s)
- Liang Song
- Endoscopy Room, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Xiao-Yan Wang
- Department of Epidemiology and Health Statistics, Basic Medical College of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Xiao-Feng He
- Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| |
Collapse
|
4
|
Tan B, Li Y, Di Y, Fan L, Zhao Q, Liu Q, Wang D, Jia N. Clinical value of peripheral blood microRNA detection in evaluation of SOX regimen as neoadjuvant chemotherapy for gastric cancer. J Clin Lab Anal 2017; 32:e22363. [PMID: 29168576 DOI: 10.1002/jcla.22363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy has been widely applied in treating advanced gastric cancer (GC). However, little research has been conducted on evaluating the effect of neoadjuvant chemotherapy. Purpose of this study was to evaluate the effect of SOX regimen as neoadjuvant chemotherapy by detecting some microRNAs. METHODS Total 120 GC patients who had received neoadjuvant chemotherapy (SOX regimen) were recruited with 100 healthy participants as control contemporarily. Age and gender have no significant difference in both groups (P > .05). The effect of chemotherapy was evaluated by the results of CT scan and surgery. Also, adverse effects of chemotherapy were documented. Peripheral blood of GC patients was collected twice: one day before chemotherapy and surgery, respectively, whereas healthy controls' peripheral blood was collected once. Quantitative real-time PCR (qPCR) was utilized to detect expression of miR-145, miR-185, miR-381, and miR-195 of peripheral blood in both groups. RESULTS One hundred and twenty patients with advanced GC completed a total of 386 cycles of neoadjuvant chemotherapy with effective rate at 84.17% (101 of 120). Expression of miR-145, miR-185, and miR-381 of patients with GC was lower than that in the control group before chemotherapy commence (all P < .05), while the expressions of miR-145 and miR-185 elevated noticeably in CG patients after neoadjuvant chemotherapy (P < .05). The differences in the expression of miR-145 and miR-185 in advanced GC patients with different chemotherapy outcomes were detected. CONCLUSION Patients with GC at advanced stages had aberrant miRs expressions. Detection of miR-145 and miR-185 expression may assist to predict effectiveness and adverse effects of SOX regimen as neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Bibo Tan
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Di
- Hebei Provincial Institute of Medical Science Information, Shijiazhuang, China
| | - Liqiao Fan
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingwei Liu
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong Wang
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Jia
- Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39:1010428317714626. [PMID: 28671042 DOI: 10.1177/1010428317714626] [Citation(s) in RCA: 636] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors in the digestive system. Surgery is currently considered to be the only radical treatment. As surgical techniques improve and progress is made in traditional radiotherapy, chemotherapy, and the implementation of neoadjuvant therapy, the 5-year survival rate of early gastric cancer can reach >95%. However, the low rate of early diagnosis means that most patients have advanced-stage disease at diagnosis and so the best surgical window is missed. Therefore, the main treatment for advanced gastric cancer is the combination of neoadjuvant chemoradiotherapy, molecular-targeted therapy, and immunotherapy. In this article, we summarize several common methods used to treat advanced gastric cancer and discuss the progress made in the treatment of gastric cancer in detail. Only clinical practice and clinical research will allow us to prolong the survival time of patients and allow the patients to truly benefit by paying attention to the individual patient characteristics, drug choice, and developing a reasonable and comprehensive treatment plan.
Collapse
Affiliation(s)
- Zheyu Song
- 1 Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuanyu Wu
- 1 Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiebing Yang
- 2 Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Dingquan Yang
- 1 Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuedong Fang
- 1 Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|