1
|
Li CQ, Sun QX, Xu SY, Li LD, Xiao H, Zhang QN. Nebulized Mycobacterium vaccae protects against asthma by attenuating the imbalance of IRF4/IRF8 expression in dendritic cells. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
2
|
Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212105. [PMID: 34831860 PMCID: PMC8622387 DOI: 10.3390/ijerph182212105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of allergic diseases is regarded as one of the key challenges in health worldwide. Although the precise mechanisms underlying this rapid increase in prevalence are unknown, emerging evidence suggests that genetic and environmental factors play a significant role. The immune system, microbiota, viruses, and bacteria have all been linked to the onset of allergy disorders in recent years. Avoiding allergen exposure is the best treatment option; however, steroids, antihistamines, and other symptom-relieving drugs are also used. Allergen bioinformatics encompasses both computational tools/methods and allergen-related data resources for managing, archiving, and analyzing allergological data. This study highlights allergy-promoting mechanisms, algorithms, and concepts in allergen bioinformatics, as well as major areas for future research in the field of allergology.
Collapse
|
3
|
BCG for the prevention and treatment of allergic asthma. Vaccine 2021; 39:7341-7352. [PMID: 34417052 DOI: 10.1016/j.vaccine.2021.07.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Allergic diseases, in particular atopic asthma, have been on the rise in most industrialized countries for several decades now. Allergic asthma is characterized by airway narrowing, bronchial hyperresponsiveness, excessive airway mucus production, eosinophil influx in the lungs and an imbalance of the Th1/Th2 responses, including elevated IgE levels. Most available interventions provide only short-term relief from disease symptoms and do not alter the underlying immune imbalance. A number of studies, mostly in mouse models, have shown that Mycobacterium bovis bacillus Calmette-Guérin (BCG) treatment is capable of preventing or reducing an established allergen-driven inflammatory response, by redirecting pathogenic Th2 towards protective Th1 and/or regulatory T cell responses. Dendritic cells stimulated by BCG appear to be a crucial first step in the immunomodulatory effects of BCG. While the protective and therapeutic effects of BCG against allergy and asthma are well documented in animal models, they are less clear in humans, both in observational studies and in randomized controlled trials. The purpose of this article is to provide an up-to-date overview of the available evidence on the anti-allergy, in particular anti-asthma effects of BCG in mice, rats and humans.
Collapse
|
4
|
Abdelaziz MH, Ji X, Wan J, Abouelnazar FA, Abdelwahab SF, Xu H. Mycobacterium-Induced Th1, Helminths-Induced Th2 Cells and the Potential Vaccine Candidates for Allergic Asthma: Imitation of Natural Infection. Front Immunol 2021; 12:696734. [PMID: 34413850 PMCID: PMC8369065 DOI: 10.3389/fimmu.2021.696734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchial asthma is one of the most chronic pulmonary diseases and major public health problems. In general, asthma prevails in developed countries than developing countries, and its prevalence is increasing in the latter. For instance, the hygiene hypothesis demonstrated that this phenomenon resulted from higher household hygienic standards that decreased the chances of infections, which would subsequently increase the occurrence of allergy. In this review, we attempted to integrate our knowledge with the hygiene hypothesis into beneficial preventive approaches for allergic asthma. Therefore, we highlighted the studies that investigated the correlation between allergic asthma and the two different types of infections that induce the two major antagonizing arms of T cells. This elucidation reflects the association between various types of natural infections and the immune system, which is predicted to support the main objective of the current research on investigating of the benefits of natural infections, regardless their immune pathways for the prevention of allergic asthma. We demonstrated that natural infection with Mycobacterium tuberculosis (Mtb) prevents the development of allergic asthma, thus Bacille Calmette-Guérin (BCG) vaccine is suggested at early age to mediate the same prevention particularly with increasing its efficiency through genetic engineering-based modifications. Likewise, natural helminth infections might inhabit the allergic asthma development. Therefore, helminth-derived proteins at early age are good candidates for designing vaccines for allergic asthma and it requires further investigation. Finally, we recommend imitation of natural infections as a general strategy for preventing allergic asthma that increased dramatically over the past decades.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Xiaoyun Ji
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
| | - Jie Wan
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
- Department of Neuroimmunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fatma A. Abouelnazar
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sayed F. Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Huaxi Xu
- International Genomics Research Center (IGRC), Institute of Immunology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Nordengrün M, Michalik S, Völker U, Bröker BM, Gómez-Gascón L. The quest for bacterial allergens. Int J Med Microbiol 2018; 308:738-750. [DOI: 10.1016/j.ijmm.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
|
6
|
Zhang Y, Feng Y, Li L, Ye X, Wang J, Wang Q, Li P, Li N, Zheng X, Gao X, Li C, Li F, Sun B, Lai K, Su Z, Zhong N, Chen L, Feng L. Immunization with an adenovirus-vectored TB vaccine containing Ag85A-Mtb32 effectively alleviates allergic asthma. J Mol Med (Berl) 2018; 96:249-263. [PMID: 29302700 PMCID: PMC5859035 DOI: 10.1007/s00109-017-1614-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/12/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Abstract Current treatments for allergic asthma primarily ameliorate symptoms rather than inhibit disease progression. Regulating the excessive T helper type 2 (Th2) responses may prevent asthma exacerbation. In this study, we investigated the protective effects of Ad5-gsgAM, an adenovirus vector carrying two mycobacterial antigens Ag85A and Mtb32, against allergic asthma. Using an ovalbumin (OVA)-induced asthmatic mouse model, we found that Ad5-gsgAM elicited much more Th1-biased CD4+T and CD8+T cells than bacillus Calmette-Guérin (BCG). After OVA challenge, Ad5-gsgAM-immunized mice showed significantly lowered airway inflammation in comparison with mice immunized with or without BCG. Total serum immunoglobulin E and pulmonary inducible-nitric-oxide-synthase were efficiently reduced. The cytokine profiles in bronchial-alveolar-lavage-fluids (BALFs) were also modulated, as evidenced by the increased level of interferon-γ (IFN-γ) and the decreased level of interleukin (IL)-4, IL-5, and IL-13. Anti-inflammatory cytokine IL-10 was sharply increased, whereas pro-inflammatory cytokine IL-33 was significantly decreased. Importantly, exogenous IL-33 abrogated the protective effects of Ad5-gsgAM, revealing that the suppression of IL-33/ST2 axis substantially contributed to protection against allergic inflammation. Moreover, regulatory T cells were essential for regulating aberrant Th2 responses as well as IL-33/ST2 axis. These results suggested that modulating the IL-33/ST2 axis via adenovirus-vectored mycobacterial antigen vaccination may provide clinical benefits in allergic inflammatory airways disease. Key messages •Ad5-gsgAM elicits Th1 responses and suppresses Th2-mediated allergic asthma in mice. •Ad5-gsgAM inhibits IL-33/ST2 axis by reducing IL-33 secretion but not ILC2 recruiting. •Treg is essential for modulating Th2 responses and IL-33/ST2 axis by Ad5-gsgAM. Electronic supplementary material The online version of this article (10.1007/s00109-017-1614-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiling Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.,Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Liang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Xianmiao Ye
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Jinlin Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Qian Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Na Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuehua Zheng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Xiang Gao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhong Su
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.
| | - Liqiang Feng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China.
| |
Collapse
|
7
|
Kowalewicz-Kulbat M, Locht C. BCG and protection against inflammatory and auto-immune diseases. Expert Rev Vaccines 2017; 16:1-10. [PMID: 28532186 DOI: 10.1080/14760584.2017.1333906] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bacillus Calmette-Guérin (BCG) is the only available vaccine against tuberculosis. Although its protective efficacy against pulmonary tuberculosis is still under debate, it provides protection against other mycobacterial diseases. BCG is also an effective therapy against superficial bladder cancer and potentially decreases overall childhood mortality. Areas covered: The purpose of this paper is to provide a state-of-the-art summary of the beneficial effects of BCG in inflammatory and auto-immune diseases. As a strong inducer of Th1 type immunity, BCG has been reported to protect against atopic conditions, such as allergic asthma, a Th2-driven disorder. Its protective effect has been well documented in mice, but still awaits definitive evidence in humans. Similarly, murine studies have shown a protective effect of BCG against auto-immune diseases, such as multiple sclerosis and insulin-dependent diabetes, but studies in humans have come to conflicting conclusions. Expert commentary: Studies in mice have shown a beneficial effect of the BCG vaccine against allergic asthma, multiple sclerosis and diabetes. However, the understanding of its mechanism is still fragmentary and requires further in depth research. Some observational or intervention studies in humans have also suggested a beneficial effect, but definitive evidence for this requires confirmation in carefully conducted prospective studies.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland
| | - Camille Locht
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland.,b Center for Infection and Immunity of Lille , Institut Pasteur de Lille , Lille , France.,c Center for Infection and Immunity of Lille , Inserm U1019 , Lille , France.,d Center for Infection and Immunity of Lille , CNRS UMR 8204 , Lille , France.,e Center for Infection and Immunity of Lille , Université Lille Nord de France , Lille , France
| |
Collapse
|
8
|
Mycobacterium avium Subsp. paratuberculosis Induces Specific IgE Production in Japanese People with Allergies. Int J Inflam 2017; 2017:7959154. [PMID: 28523203 PMCID: PMC5421096 DOI: 10.1155/2017/7959154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Background. The prevalence of allergies is steadily increasing worldwide; however, the pathogenesis is still unclear. We hypothesized that Mycobacterium avium subsp. paratuberculosis (MAP) may contribute to allergy development. This organism can be present in dairy foods, it can elicit an immunomodulatory switch from a Th1 to a Th2 response, and it has been speculated that it is linked to several human autoimmune diseases. To determine the contribution, sera from 99 individuals with various atopic disorders and 45 healthy nonallergic controls were assessed for total IgE levels and successively for MAP-specific IgE by ELISA. Results. The mean total serum IgE level in allergic patients was 256 ± 235 IU/mL, and in the healthy controls it was 62 ± 44 IU/mL (AUC = 0.88; p < 0.0001). Among the patient groups, 50 of the 99 subjects had increased IgE total level ≥ 150 IU/mL, while 49 subjects had IgE ≤ 150 IU/mL (mean level: 407 ± 256 IU/mL versus 106 ± 16 IU/mL; p < 0.0001). Additionally, 6 out of 50 subjects (12%) with IgE ≥ 150 IU/mL and none (0%) with IgE ≤ 150 IU/mL were positive for specific MAP IgE (AUC = 0.63; p = 0.03). Conclusion. The present study revealed that MAP has the ability to induce specific IgE and might contribute to the induction of allergic inflammation in genetically predisposed individuals.
Collapse
|
9
|
Flanagan KL, Plebanski M. Sex-differential heterologous (non-specific) effects of vaccines: an emerging public health issue that needs to be understood and exploited. Expert Rev Vaccines 2016; 16:5-13. [DOI: 10.1080/14760584.2016.1203260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katie L. Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
| | - Magdalena Plebanski
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
- Monash Institute of Medical Engineering, Monash University, Prahran, Australia
| |
Collapse
|
10
|
Guangorena-Gómez JO, Maravilla-Domínguez A, García-Arenas G, Cervantes-Flores M, Meza-Velázquez R, Rivera-Guillén M, Acosta-Saavedra LC, Goytia-Acevedo RC. Modulation of the immune response by infection with Cryptosporidium spp. in children with allergic diseases. Parasite Immunol 2016; 38:468-80. [PMID: 27150641 DOI: 10.1111/pim.12334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
It has been demonstrated that the allergic response can be ameliorated by the administration of pathogen derivatives that activate Toll-like receptors and induce a Th1-type immune response (IR). Cryptosporidium is a parasite that promotes an IR via Toll-like receptors and elicits the production of Th1-type cytokines, which limit cryptosporidiosis. The aim of this study was to investigate allergy-related immune markers in children naturally infected with Cryptosporidium. In a cross-sectional study, 49 children with or without clinical diagnosis of allergies, oocysts of Cryptosporidium spp. in the faeces were screened microscopically. We microscopically screened for leucocytes, examined T and B cells for allergy-related activation markers using flow cytometry and evaluated serum for total IgE using chemiluminescence. Children with allergies and Cryptosporidium in the faeces had significantly lower levels of total IgE, B cells, CD19(+) CD23(+) and CD19(+) CD124(+) cells as well as a greater percentage of interferon-gamma (IFN-γ(+) ) and IL-4(+) CD4(+) cells than children with allergies without Cryptosporidium. This is the first description of the modulation of the IR in children with allergic diseases in the setting of natural Cryptosporidium infection. Our findings suggest the involvement of CD4(+) cells producing IL-4 and IFN-γ in the IR to Cryptosporidium in naturally infected children.
Collapse
Affiliation(s)
- J O Guangorena-Gómez
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango, México
| | - A Maravilla-Domínguez
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango, México
| | - G García-Arenas
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango, México
| | | | - R Meza-Velázquez
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango, México.,Centro de Atención a Metales Pesados, Torreón, Coahuila, México
| | - M Rivera-Guillén
- Centro de Atención a Metales Pesados, Torreón, Coahuila, México.,Facultad de Medicina, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | | | - R C Goytia-Acevedo
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango, México
| |
Collapse
|
11
|
Kim DH, Sohn JH, Park HJ, Lee JH, Park JW, Choi JM. CpG Oligodeoxynucleotide Inhibits Cockroach-Induced Asthma via Induction of IFN-γ⁺ Th1 Cells or Foxp3⁺ Regulatory T Cells in the Lung. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:264-75. [PMID: 26922937 PMCID: PMC4773215 DOI: 10.4168/aair.2016.8.3.264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/13/2015] [Accepted: 08/28/2015] [Indexed: 02/04/2023]
Abstract
Purpose CpG oligodeoxynucleotide (CpG-ODN), a TLR9 agonist, activates innate immunity and induces Th1 response. Although the immune modulatory effect of CpG-ODN has been extensively studied, its function in cockroach extract-induced allergic asthma has not been studied. Here, we investigated the inhibitory function of CpG-ODN in cockroach extract-induced asthma in mice with different treatment schemes. Methods Scheme 1: BALB/C mice were intra-nasally co-administered by cockroach extract and CpG-ODN twice a week for 3 weeks; Scheme 2: The mice were intra-nasally pre-treated with CpG-ODN at day 0 and cockroach allergen challenge was performed from day 3 as in scheme 1. Scheme 3: Cockroach allergen challenge was performed as in scheme 1 and CpG-ODN was post-treated at day 21. Then, BAL cell count, flow cytometric analysis of alveolar macrophages, regulatory T cells, and lung tissue histology, Th1 and Th2 cytokines, serum IgE, cockroach specific IgE, IgG1/IgG2a ratio, and airway hyper-responsiveness were evaluated. Results Mice with repeated intra-nasal exposure to CpG-ODN showed a dramatic decrease in eosinophilic inflammation, goblet cell hyperplasia, and airway hyper-responsiveness with reduction of IL-13, IL-5, and serum IgE, cockroach specific IgE and IgG1/IgG2a ratio. This inhibitory function might be related to the up-regulation of IL-10 and CD4+Foxp3+ regulatory T cells in the lung. Interestingly, one-time challenge of CpG-ODN either prior or posterior to cockroach extract exposure could modulate airway inflammation and hyper-responsiveness via increase of Th1 response. Conclusions Collectively, our data suggest that CpG-ODN treatment modulates Th2 inflammation in the lung by induction of regulatory T cells or Th1 response in a cockroach-induced asthma model.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jung Ho Sohn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Korea.,Division of Allergy and Immunology, Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Jai Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jae Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Won Park
- Division of Allergy and Immunology, Department of Internal Medicine and Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| | - Je Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Korea.
| |
Collapse
|
12
|
Shim JU, Rhee JH, Jeong JU, Koh YI. Flagellin Modulates the Function of Invariant NKT Cells From Patients With Asthma via Dendritic Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:206-15. [PMID: 26922930 PMCID: PMC4773208 DOI: 10.4168/aair.2016.8.3.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Invariant natural killer T (iNKT) cells play a critical role in the pathogenesis of asthma. We previously reported the association between circulating Th2-like iNKT cells and lung function in asthma patients and the suppressive effect of Toll-like receptor 5 ligand flagellin B (FlaB) on asthmatic in a mouse model. Thus, we investigated whether FlaB modulates the function of circulating iNKT cells in asthmatic patients. METHODS Peripheral blood mononuclear cells (PBMCs) were treated with FlaB, and the secreted and intracellular cytokines of iNKT cells were evaluated by using ELISA and flow cytometry, respectively, following stimulation with α-galactosylceramide. Foxp3⁺ iNKT cells were also measured. To determine the effect of FlaB-treated dendritic cells (DCs) on iNKT cells, we co-cultured CD14⁺ monocyte-derived DCs and T cells from patients with house dust mite-sensitive asthma and analyzed intracellular cytokines in iNKT cells. RESULTS A reduction of IL-4 and IL-17 production by iNKT cells in PBMCs after FlaB treatment was alleviated following blocking of IL-10 signaling. A decrease in the frequencies of IL-4⁺ and IL-17⁺ iNKT cells by FlaB-treated DCs was reversed after blocking of IL-10 signaling. Simultaneously, an increase in Foxp3⁺ iNKT cells induced by FlaB treatment disappeared after blocking of IL-10. CONCLUSIONS FlaB may inhibit Th2- and Th17-like iNKT cells and induce Foxp3⁺ iNKT cells by DCs via an IL-10-dependent mechanism in asthmatic patients. In patients with a specific asthma phenotype associated with iNKT cells, FlaB may be an effective immunomodulator for iNKT cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Jae Uoong Shim
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Ji Ung Jeong
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Young Il Koh
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea.
| |
Collapse
|
13
|
Boer MC, Joosten SA, Ottenhoff THM. Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Front Immunol 2015; 6:217. [PMID: 26029205 PMCID: PMC4426762 DOI: 10.3389/fimmu.2015.00217] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects of Tregs have been demonstrated for different pathogens and in different stages of infection. Moreover, Tregs that are induced by a specific pathogen may non-specifically suppress immunity against other microbes and parasites. Thus, Treg effects need to be assessed not only in homologous but also in heterologous infections and vaccinations. Though Tregs protect the human host against excessive inflammation, they probably also increase the risk of pathogen persistence and chronic disease, and the possibility of disease reactivation later in life. Mycobacterium leprae and Mycobacterium tuberculosis, causing leprosy and tuberculosis, respectively, are among the most ancient microbes known to mankind, and are master manipulators of the immune system toward tolerance and pathogen persistence. The majority of mycobacterial infections occur in settings co-endemic for viral, parasitic, and (other) bacterial coinfections. In this paper, we discuss recent insights in the activation and activity of Tregs in human infectious diseases, with emphasis on early, late, and non-specific effects in disease, coinfections, and vaccination. We highlight mycobacterial infections as important models of modulation of host responses and vaccine-induced immunity by Tregs.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
14
|
Parkash O. T Regulatory Cells and BCG as a Vaccine against Tuberculosis: An Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Choi IS. Immunomodulating approach to asthma using mycobacteria. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:187-8. [PMID: 24843791 PMCID: PMC4021234 DOI: 10.4168/aair.2014.6.3.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Inseon S Choi
- Department of Allergy, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
16
|
Talat Iqbal N, Hussain R. Non-specific immunity of BCG vaccine: A perspective of BCG immunotherapy. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|