1
|
Kim EY, Kim SB, Kim EJ, Kim M, Ryu GH, Shin H, Lim SE, Sohn Y, Jung HS. Phyllostachys nigra Munro var alleviates inflammatory chemokine expression and DNCB-induced atopic-like dermatitis in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116953. [PMID: 37506780 DOI: 10.1016/j.jep.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllostachys nigra (PN) is an herbal medicine that originates from the inner bark of Phyllostachys nigra Munro var. henosis Stapf or Phyllostachys bambusoides Siebold et Zuccarini. It has long been used to relieve fever and to treat diarrhea and inflammation. PN has been shown to possess inhibitory effects on pneumonia, intestinal inflammation, tumors, and fatigue. However, its potential efficacy in the treatment of atopic dermatitis (AD) has not been extensively studied or reported. AIM OF THE STUDY The objective of this research was to investigate the impact of PN on HaCaT and HMC-1 cells, as well as its potential in an experimental model of AD induced by 1-chloro-2,4-dinitrobenzene (DNCB). METHODS We analyzed the anti-inflammatory efficacy of PN in HaCaT cells and HMC-1 cells using ELISA and PCR, and investigated invasion of inflammatory cell, change of dermis and epidermis, and the SCORAD index in AD-like mice model. We also measured the MAPK signaling pathway using the dorsal tissue of mice. RESULTS Our results show that PN reduced the expressions of TARC, GM-CSF, TNF-α, MCP-1, and IL-6 in vitro. PN also decreased the SCORAD index, thickening of epidermis and dermis, and inhibited the invasions of mast cells and eosinophils as well as CD4+ T and CD8+ T cells. Furthermore, PN suppressed the level of IgE and IL-6, and also inhibited the MAPK phosphorylation in the dorsal skin. CONCLUSION These results demonstrate that PN could be an effective alternative medicine for allergic inflammatory disease.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Sang-Bae Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Myunghyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Gwang-Hyun Ryu
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hwajeong Shin
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Seo-Eun Lim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Bee Venom Within Liposomes Synergistically Inhibit Atopic Dermatitis in Mice. JOURNAL OF ACUPUNCTURE RESEARCH 2022. [DOI: 10.13045/jar.2021.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: This study was performed to determine the effects of liposome-encapsulated bee venom (BV) treatment of inflammatory factors in atopic dermatitis (AD) compared with BV treatment.Methods: AD was induced by phthalic anhydride in mice and the effects of BV liposomes were measured. Using Leica Application Suite, thickened epidermis and dermis were measured after BV liposome treatment (0.05 and 0.1 μg/mL). The number of stained mast cells and the concentration of immunoglobulin (Ig)E were measured. Serum IgE concentration was analyzed using an enzyme-linked immunosorbent assay. The serum concentrations of interleukin (IL)-1, IL-4, and IL-6 inflammatory cytokines were measured. The levels of messenger ribonucleic acid expression of proinflammatory cytokines and chemokines were measured using reverse transcription polymerase chain reaction. Inhibition of mitogen-activated protein kinase activation, was analyzed on western blot. To measure the transcriptional activity (NF-κB inhibition by BV liposomes), western blots (p65, p-IκB, p50, and IκB) were also performed.Results: The weight of lymph nodes, serum IgE concentrations, morphological changes in the skins from the backs of the mice, and mast cell numbers in inflamed tissues were noticeably lower in the BV liposome treatment group compared with the BV treatment group. The concentrations of pro-inflammatory cytokines (IL-1, IL-4, IL-6) and chemokines (TSLP, CCL22) were also reduced. Activation of mitogen-activated protein kinase (p-ERK and p-p38), and transcriptional activity (p65, p-IκB, p50, and IκB) was strongly suppressed in the BV liposome group.Conclusion: BV liposomes may have a better therapeutic effect than BV for the treatment of AD.
Collapse
|