1
|
Lee RS, Geronimo CL, Liu L, Twarowski JM, Malkova A, Zakian VA. Identification of the nuclear localization signal in the Saccharomyces cerevisiae Pif1 DNA helicase. PLoS Genet 2023; 19:e1010853. [PMID: 37486934 PMCID: PMC10399864 DOI: 10.1371/journal.pgen.1010853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023] Open
Abstract
Saccharomyces cerevisiae Pif1 is a multi-functional DNA helicase that plays diverse roles in the maintenance of the nuclear and mitochondrial genomes. Two isoforms of Pif1 are generated from a single open reading frame by the use of alternative translational start sites. The Mitochondrial Targeting Signal (MTS) of Pif1 is located between the two start sites, but a Nuclear Localization Signal (NLS) has not been identified. Here we used sequence and functional analysis to identify an NLS element. A mutant allele of PIF1 (pif1-NLSΔ) that lacks four basic amino acids (781KKRK784) in the carboxyl-terminal domain of the 859 amino acid Pif1 was expressed at wild type levels and retained wild type mitochondrial function. However, pif1-NLSΔ cells were defective in four tests for nuclear function: telomere length maintenance, Okazaki fragment processing, break-induced replication (BIR), and binding to nuclear target sites. Fusing the NLS from the simian virus 40 (SV40) T-antigen to the Pif1-NLSΔ protein reduced the nuclear defects of pif1-NLSΔ cells. Thus, four basic amino acids near the carboxyl end of Pif1 are required for the vast majority of nuclear Pif1 function. Our study also reveals phenotypic differences between the previously described loss of function pif1-m2 allele and three other pif1 mutant alleles generated in this work, which will be useful to study nuclear Pif1 functions.
Collapse
Affiliation(s)
- Rosemary S. Lee
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Carly L. Geronimo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Liping Liu
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jerzy M. Twarowski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
2
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
3
|
Rajapaksha P, Simmons RH, Gray SJ, Sun DJ, Nguyen P, Nickens DG, Bochman ML. Bulk phase biochemistry of PIF1 and RecQ4 family helicases. Methods Enzymol 2022; 673:169-190. [DOI: 10.1016/bs.mie.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Interaction of Isocitrate Lyase with Proteins Involved in the Energetic Metabolism in Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040309. [PMID: 33238437 PMCID: PMC7712234 DOI: 10.3390/jof6040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. Methods: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. Results: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. Conclusions: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.
Collapse
|
5
|
Nguyen TT, Blackburn MR, Sussman MR. Intermolecular and Intramolecular Interactions of the Arabidopsis Plasma Membrane Proton Pump Revealed Using a Mass Spectrometry Cleavable Cross-Linker. Biochemistry 2020; 59:2210-2225. [PMID: 32459472 DOI: 10.1021/acs.biochem.0c00268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In plants and fungi, the plasma membrane proton pump (H+-ATPase) establishes an electrochemical gradient across the plasma membrane, which serves as the driving force for the secondary transport of ions and nutrients across the cell membrane. This is an essential enzyme that functions in many important processes including stomatal movement, cell elongation, and cellular responses to stimuli from hormones, light, and other environmental conditions. Therefore, understanding how the activity of the H+-ATPase is regulated is important to understand how plants adapt to different growth conditions. The autoinhibitory effect of the C-terminal regulatory domain of H+-ATPase is well-established and is thought to be mediated by interactions with the catalytic domains. Here, using the lysine reactive mass spectrometry cleavable cross-linker DSSO, we found that the C-terminal domain of the Arabidopsis H+-ATPase 2 (AHA2) cross-linked extensively with the actuator, nucleotide-binding, and phosphorylation domains, suggesting that the C-terminal domain regulates the catalytic cycle by modulating the relative positions of these domains. Interestingly, several C-terminal cross-links occurred near a predicted proton binding site (Asp-684 in TM6), suggesting that the C-terminal domain may regulate proton efflux. Additionally, cross-links between the C-terminal domain and other domains of AHA2 were detected in a monomeric protein resolved on SDS-PAGE, suggesting that intramolecular interactions may also be involved in the regulation of enzyme activity. Finally, we observed mixed-isotope cross-linking between the C-terminal domain and other domains of 14N-AHA2 (unlabeled) and 15N-AHA2 (labeled), supporting our model that oligomeric H+-ATPase may autoinhibit the neighboring monomer in a "head-to-tail" configuration.
Collapse
Affiliation(s)
- Thao T Nguyen
- University of Wisconsin-Madison, Biochemistry Department and the Center for Genome Science Innovation, Madison, Wisconsin 53706, United States
| | - Matthew R Blackburn
- University of Wisconsin-Madison, Biochemistry Department and the Center for Genome Science Innovation, Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- University of Wisconsin-Madison, Biochemistry Department and the Center for Genome Science Innovation, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Singh SP, Kukshal V, De Bona P, Antony E, Galletto R. The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers. Nucleic Acids Res 2019; 46:7193-7205. [PMID: 29931186 PMCID: PMC6101547 DOI: 10.1093/nar/gky530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023] Open
Abstract
Rim1 is the mitochondrial single-stranded DNA binding protein in Saccharomyces cerevisiae and functions to coordinate replication and maintenance of mtDNA. Rim1 can form homo-tetramers in solution and this species has been assumed to be solely responsible for ssDNA binding. We solved structures of tetrameric Rim1 in two crystals forms which differ in the relative orientation of the dimers within the tetramer. In testing whether the different arrangement of the dimers was due to formation of unstable tetramers, we discovered that while Rim1 forms tetramers at high protein concentration, it dissociates into a smaller oligomeric species at low protein concentrations. A single point mutation at the dimer-dimer interface generates stable dimers and provides support for a dimer-tetramer oligomerization model. The presence of Rim1 dimers in solution becomes evident in DNA binding studies using short ssDNA substrates. However, binding of the first Rim1 dimer is followed by binding of a second dimer, whose affinity depends on the length of the ssDNA. We propose a model where binding of DNA to a dimer of Rim1 induces tetramerization, modulated by the ability of the second dimer to interact with ssDNA.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Ziemianowicz DS, Ng D, Schryvers AB, Schriemer DC. Photo-Cross-Linking Mass Spectrometry and Integrative Modeling Enables Rapid Screening of Antigen Interactions Involving Bacterial Transferrin Receptors. J Proteome Res 2018; 18:934-946. [DOI: 10.1021/acs.jproteome.8b00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Liu S, Yu F, Hu Q, Wang T, Yu L, Du S, Yu W, Li N. Development of in Planta Chemical Cross-Linking-Based Quantitative Interactomics in Arabidopsis. J Proteome Res 2018; 17:3195-3213. [DOI: 10.1021/acs.jproteome.8b00320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shichang Liu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tingliang Wang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lujia Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
9
|
Protein-protein interaction analysis for functional characterization of helicases. Methods 2016; 108:56-64. [PMID: 27090004 DOI: 10.1016/j.ymeth.2016.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/22/2022] Open
Abstract
Helicases are enzymes involved in nucleic acid metabolism, playing major roles in replication, transcription, and repair. Defining helicases oligomerization state and transient and persistent protein interactions is essential for understanding of their function. In this article we review current methods for the protein-protein interaction analysis, and discuss examples of its application to the study of helicases: Pif1 and DDX3. Proteomics methods are our main focus - affinity pull-downs and chemical cross-linking followed by mass spectrometry. We review advantages and limitations of these methods and provide general guidelines for their implementation in the functional analysis of helicases.
Collapse
|