1
|
Destro ALF, da Silva Mattosinhos P, Novaes RD, Sarandy MM, Gonçalves RV, Freitas MB. Impact of plant extracts on hepatic redox metabolism upon lead exposure: a systematic review of preclinical in vivo evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91563-91590. [PMID: 37495800 DOI: 10.1007/s11356-023-28620-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/01/2023] [Indexed: 07/28/2023]
Abstract
The liver is a central target organ of heavy metals toxicity, and secondary metabolites of several plant species are suggested to attenuate lead (Pb)-induced hepatotoxicity through antioxidant and anti-inflammatory mechanisms. We used a systematic review framework to map the impact of plant extracts and bioactive secondary metabolites on immunological markers and liver redox metabolism in preclinical models of Pb exposure. This is a systematic review performed according to PRISMA guidelines. The structured research of publications was done through PubMed, Scopus, Web of Science, and Embase databases, selecting and analyzing 41 original studies included via the eligibility criteria. Evidence indicates that Pb-exposure increases reactive oxygen/nitrogen species (ROS/RNS) production by δ-aminolevulinic acid auto-oxidation, xanthine dehydrogenase, and xanthine oxidase upregulation. Pb exposure also inhibits antioxidant enzymes, potentiating ROS/NOS levels and reactive cell damage. Plant extracts rich in flavonoids, tannins, alkaloids, anthocyanins, and vitamins exerted hepatoprotective effects by chelating and decreasing Pb bioaccumulation. In addition, plant extracts reinforce exogenous and endogenous antioxidant defenses, attenuating liver oxidative stress and cell death. The lack of blinded evaluators and randomized experimental groups were the main sources of bias identified, which need to be controlled in toxicological studies aimed at identifying natural products applied to the prevention or treatment of Pb poisoning.
Collapse
Affiliation(s)
- Ana Luiza Fonseca Destro
- Department of Animal Biology, Federal University of Viçosa, Minas Gerais, Viçosa, MG, 36570-900, Brazil.
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | | | | | - Mariella Bontempo Freitas
- Department of Animal Biology, Federal University of Viçosa, Minas Gerais, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
2
|
Lakka N, Pai B, Mani MS, Dsouza HS. Potential diagnostic biomarkers for lead-induced hepatotoxicity and the role of synthetic chelators and bioactive compounds. Toxicol Res (Camb) 2023; 12:178-188. [PMID: 37125327 PMCID: PMC10141777 DOI: 10.1093/toxres/tfad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Lead (Pb2+) poisoning is a public health concern of global dimensions. Although several public health guidelines and workplace safety policies are existing and enforced, lead toxicity cases are drastically increasing. Lead exposure leads to numerous harmful consequences and causes adverse effects on different body organs and systems, mainly via the generation of reactive oxygen species, leading to augmented oxidative stress, competing with metal ions, and binding with the sulfhydryl groups. In several instances, lead poisoning cases remain undiagnosed and untreated or receive only symptomatic treatment. Estimation of blood lead levels reflects only a recent exposure, however, which does not reveal the total body burden. This review summarizes the effects of lead with special reference to hepatotoxicity and some of the potential diagnostic biomarkers. Furthermore, it also focuses on synthetic chelators used in the treatment of lead poisoning and the advantage of using bioactive compounds with an emphasis on the ameliorative effect of garlic.
Collapse
Affiliation(s)
- Netranandini Lakka
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bhagyashree Pai
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
3
|
Shawahna R, Zyoud A, Naseef O, Muwafi K, Matar A. Salivary Lead Levels among Workers in Different Industrial Areas in the West Bank of Palestine: a Cross-Sectional Study. Biol Trace Elem Res 2021; 199:4410-4417. [PMID: 33394307 DOI: 10.1007/s12011-020-02567-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
Saliva is a biofluid that can easily be obtained and used for biomonitoring lead levels in occupationally and environmentally exposed individuals. The aims of this study were to determine salivary lead levels among workers in different industrial areas in the West Bank of Palestine and investigate the association between sociodemographic and occupational characteristics of the workers and their salivary lead levels. Salivary samples were obtained from workers in different industrial areas in metal-free polyethylene tubes. The samples were analyzed for their lead contents using a pre-validated inductively coupled plasma-mass spectrometric method. A total of 97 salivary samples were analyzed. The median salivary lead level was 1.84 μg/dL an IQR of 5.04 μg/dL. Salivary lead levels were significantly higher in workers who were 40 years and older (p value = 0.031), had 3 children or more (p value = 0.048), worked in repair workshops (p value = 0.012), worked in industrial areas for 20 years or more (p value = 0.048), did not consume fruits on regular basis (p value = 0.031), and smoked for 30 years or more (p value = 0.013). Multiple linear regression showed that smoking of 30 years old or more was a significant (p value < 0.001) predictor of higher salivary lead levels. Salivary lead levels among workers from different industrial areas of the West Bank were comparable to those occupationally exposed to lead in more industrialized and urbanized areas of the world. Smoking was a predictor of higher salivary lead levels.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 19, Office: 1340, P.O. Box 7, Nablus, Palestine.
- An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| | - Ahed Zyoud
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
| | - Omar Naseef
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Kamil Muwafi
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdullah Matar
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: A novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 2020; 27:1538-1552. [PMID: 32489292 PMCID: PMC7253904 DOI: 10.1016/j.sjbs.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, 840213, Sultan Abubakar, Sokoto State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Corresponding author at: Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Mumtaz S, Ali S, Khan R, Shakir HA, Tahir HM, Mumtaz S, Andleeb S. Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8953-8964. [PMID: 32036533 DOI: 10.1007/s11356-020-07654-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Due to industrial and urban sewage, the metal contaminations in aquatic and terrestrial environments are increasing day by day, especially in developing countries. Despite the study of several years, we are inert far away from an actual medication for prolonged toxicity of heavy metals such as mercury, lead, cadmium etc. Lead is one of the most common heavy metals that possess toxicological effects on numerous tissues of animals as well as humans. Several toxic effects of lead on reproductive organs, renal system, central nervous system, liver, lungs, blood parameters, and bones have been reported. On the other hand, several reports depicted that garlic is operative in declining the absorption of lead in bones as well as soft tissues. A combination of vitamin C and vitamin E enhances the biological recovery induced by lead and mobilize the heavy metal such as lead from intra-cellular positions. This review provides therapeutic approaches such as vitamin C, vitamin E, and extract of garlic to treat the detrimental effects caused after the exposure of lead. These therapeutic strategies are beneficial for both the prevention and alleviation of lead noxiousness.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Rida Khan
- Microbial Biotechnology and Medical Toxicology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Hafiz Muhammad Tahir
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Samiara Mumtaz
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology and Medical Toxicology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
6
|
Manoj Kumar V, Henley AK, Nelson CJ, Indumati O, Prabhakara Rao Y, Rajanna S, Rajanna B. Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1544-1552. [PMID: 27785721 DOI: 10.1007/s11356-016-7923-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
The present investigation was undertaken to evaluate the ameliorative activity of Allium sativum against lead-induced oxidative stress in the brain, liver, and kidney of male rats. Four groups of male Wistar strain rats (100-120 g) were taken: group 1 received 1000 mg/L sodium acetate and group 2 was given 1000 mg/L lead acetate through drinking water for 2 weeks. Group 3 and 4 were treated with 250 mg/kg body weight/day of A. sativum and 500 mg/kg body weight/day of A. sativum, respectively, by oral intubation for a period of 2 weeks along with lead acetate. The rats were sacrificed after treatment and the brain, liver, and kidney were isolated on ice. In the brain, four important regions namely the hippocampus, cerebellum, cerebral cortex, and brain stem were separated and used for the present investigation. Blood was also drawn by cardiac puncture and preserved in heparinized vials at 4 °C for estimation of delta-aminolevulinic acid dehydratase (ALAD) activity. The results showed a significant (p < 0.05) increase in reactive oxygen species (ROS), lipid peroxidation products (LPP), total protein carbonyl content (TPCC), and lead in the selected brain regions, liver, and kidney of lead-exposed group compared with their respective controls. Blood delta-ALAD activity showed a significant (p < 0.05) decrease in the lead-exposed rats. However, the concomitant administration of A. sativum resulted in tissue-specific recovery of oxidative stress parameters namely ROS, LPP, and TPCC. A. sativum treatment also restored the blood delta-ALAD activity back to control. Overall, our results indicate that A. sativum administration could be an effective antioxidant treatment strategy for lead-induced oxidative insult.
Collapse
Affiliation(s)
- V Manoj Kumar
- Division of Animal Physiology and Toxicology, Department of Zoology, Andhra University, Visakhapatnam, 530003, India
| | - A K Henley
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - C J Nelson
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - O Indumati
- Division of Animal Physiology and Toxicology, Department of Zoology, Andhra University, Visakhapatnam, 530003, India
| | - Y Prabhakara Rao
- Division of Animal Physiology and Toxicology, Department of Zoology, Andhra University, Visakhapatnam, 530003, India.
| | - S Rajanna
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - B Rajanna
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| |
Collapse
|
7
|
Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway. Nutrients 2016; 8:nu8100656. [PMID: 27775649 PMCID: PMC5084042 DOI: 10.3390/nu8100656] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of liver tissue.
Collapse
|