1
|
Khanna A, Kumar N, Rana R, Jyoti, Sharma A, Muskan, Kaur H, Bedi PMS. Fluoroquinolones tackling antimicrobial resistance: Rational design, mechanistic insights and comparative analysis of norfloxacin vs ciprofloxacin derivatives. Bioorg Chem 2024; 153:107773. [PMID: 39241583 DOI: 10.1016/j.bioorg.2024.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs. Herein, we have explored the latest advancements in antimicrobial activities of FN analogues and the effect of various substitutions with a focus on utilizing the FN nucleus to search for novel potential antimicrobial candidates. Moreover, this review also provides a comparative analysis of two widely prescribed FNs that are ciprofloxacin and norfloxacin, explaining their rationale for their design, structure-activity relationships (SAR), causes of resistance, and mechanistic studies. These insights will prove advantageous for new researchers by aiding them in designing novel and effective FN-based compounds to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Nitish Kumar
- Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab 145001, India.
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | | | |
Collapse
|
2
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Hayes K, O'Halloran F, Cotter L. A review of antibiotic resistance in Group B Streptococcus: the story so far. Crit Rev Microbiol 2020; 46:253-269. [PMID: 32363979 DOI: 10.1080/1040841x.2020.1758626] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Group B Streptococcus (GBS) is the leading cause of neonatal disease worldwide, and invasive disease in adults is becoming more prevalent. Currently, some countries adopt an intrapartum antibiotic prophylaxis regime to help prevent the transmission of GBS from mother to neonate during delivery. This precaution has reduced the incidence of GBS-associated early-onset disease; however, rates of late-onset disease and stillbirths associated with GBS infections remain unchanged. GBS is still recognized as being universally susceptible to beta-lactam antibiotics; however, there have been reports of reduced susceptibility to beta-lactams, including penicillin, in some countries. Resistance to second-line antibiotics, such as erythromycin and clindamycin, remains high amongst GBS, with several countries noting increased resistance rates in recent years. Moreover, resistance to other antibiotic classes, such as fluoroquinolones and aminoglycosides, also continues to rise. In instances where patients are allergic to penicillin and second-line antibiotics are ineffective, vancomycin is administered. While vancomycin, a last resort antibiotic, still remains largely effective, there have been two documented cases of vancomycin resistance in GBS. This review provides a comprehensive analysis of the prevalence of antibiotic resistance in GBS and outlines the specific resistance mechanisms identified in GBS isolates to date.
Collapse
|
4
|
Arias B, Kovacec V, Vigliarolo L, Suárez M, Tersigni C, Müller L, Lopardo H, Bonofiglio L, Mollerach M. Fluoroquinolone-Resistant Streptococcus agalactiae Invasive Isolates Recovered in Argentina. Microb Drug Resist 2019; 25:739-743. [PMID: 30676886 DOI: 10.1089/mdr.2018.0246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Streptococcus agalactiae or group B Streptococcus (GBS) is an important pathogen in neonates and nonpregnant individuals. Epidemiological studies of GBS resistance to fluoroquinolones (FQs) in Latin America are scarce. This study aimed to determine the local prevalence of FQ resistance in the frame of a national, prospective multicenter study of invasive GBS infections and to investigate mechanisms of resistance, serotype distribution, and clonal relationships among resistant isolates. Methods: From July 2014 to July 2015, 162 invasive GBS isolates were collected from 86 health care centers in 32 Argentinean cities. All isolates were screened for FQ nonsusceptibility using a five-disc scheme: levofloxacin (LVX), ciprofloxacin, norfloxacin (NOR), ofloxacin, and pefloxacin (PF). LVX minimal inhibitory concentration (MIC) was determined by the agar dilution method. Sequencing of internal regions of gyrA and parC genes was performed. Capsular typing and genetic characterization of nonsusceptible isolates were assessed by latex agglutination, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. Results: Twenty-four of one hundred sixty-two GBS isolates exhibited no inhibition zones to all tested FQs with an MIC range of 16-32 mg/L for LVX, and one isolate with MIC = 1 mg/L showed no inhibition zones around NOR and PF discs. In all resistant isolates, point mutations were detected in both genes. Serotype Ib was prevalent (88%). One PFGE type accounted for 84% of the FQ-resistant isolates and belonged to serotype Ib, sequence type 10. Conclusions: The prevalence of FQ resistance was 14.8% likely to be associated with dissemination of an ST10/serotype Ib clone. The unexpected high rate of resistance emphasizes the relevance for continuous surveillance of GBS epidemiology and antibiotic susceptibility.
Collapse
Affiliation(s)
- Bárbara Arias
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Verónica Kovacec
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Laura Vigliarolo
- 2 Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Buenos Aires, Argentina
| | - Mariana Suárez
- 2 Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Buenos Aires, Argentina
| | - Carina Tersigni
- 2 Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Buenos Aires, Argentina
| | - Loana Müller
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Horacio Lopardo
- 2 Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Buenos Aires, Argentina
| | - Laura Bonofiglio
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, Argentina.,3 CONICET, Buenos Aires, Argentina
| | - Marta Mollerach
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, Argentina.,3 CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Neemuchwala A, Teatero S, Patel SN, Fittipaldi N. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:6403928. [PMID: 27559344 PMCID: PMC4983356 DOI: 10.1155/2016/6403928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen.
Collapse
Affiliation(s)
| | - Sarah Teatero
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
| | - Samir N. Patel
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| |
Collapse
|
6
|
Schindler BD, Kaatz GW. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat 2016; 27:1-13. [DOI: 10.1016/j.drup.2016.04.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
7
|
Ceyssens PJ, Van Bambeke F, Mattheus W, Bertrand S, Fux F, Van Bossuyt E, Damée S, Nyssen HJ, De Craeye S, Verhaegen J, Tulkens PM, Vanhoof R. Molecular Analysis of Rising Fluoroquinolone Resistance in Belgian Non-Invasive Streptococcus pneumoniae Isolates (1995-2014). PLoS One 2016; 11:e0154816. [PMID: 27227336 PMCID: PMC4881901 DOI: 10.1371/journal.pone.0154816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022] Open
Abstract
We present the results of a longitudinal surveillance study (1995–2014) on fluoroquinolone resistance (FQ-R) among Belgian non-invasive Streptococcus pneumoniae isolates (n = 5,602). For many years, the switch to respiratory fluoroquinolones for the treatment of (a)typical pneumonia had no impact on FQ-R levels. However, since 2011 we observed a significant decrease in susceptibility towards ciprofloxacin, ofloxacin and levofloxacin with peaks of 9.0%, 6.6% and 3.1% resistant isolates, respectively. Resistance to moxifloxacin arised sporadically, and remained <1% throughout the entire study period. We observed classical topoisomerase mutations in gyrA (n = 25), parC (n = 46) and parE (n = 3) in varying combinations, arguing against clonal expansion of FQ-R. The impact of recombination with co-habiting commensal streptococci on FQ-R remains marginal (10.4%). Notably, we observed that a rare combination of DNA Gyrase mutations (GyrA_S81L/GyrB_P454S) suffices for high-level moxifloxacin resistance, contrasting current model. Interestingly, 85/422 pneumococcal strains display MICCIP values which were lowered by at least four dilutions by reserpine, pointing at involvement of efflux pumps in FQ-R. In contrast to susceptible strains, isolates resistant to ciprofloxacin significantly overexpressed the ABC pump PatAB in comparison to reference strain S. pneumoniae ATCC 49619, but this could only be linked to disruptive terminator mutations in a fraction of these. Conversely, no difference in expression of the Major Facilitator PmrA, unaffected by reserpine, was noted between susceptible and resistant S. pneumoniae strains. Finally, we observed that four isolates displayed intermediate to high-level ciprofloxacin resistance without any known molecular resistance mechanism. Focusing future molecular studies on these isolates, which are also commonly found in other studies, might greatly assist in the battle against rising pneumococcal drug resistance.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wesley Mattheus
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Sophie Bertrand
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Frédéric Fux
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Eddie Van Bossuyt
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Sabrina Damée
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Henry-Jean Nyssen
- Unit of Foodborne Pathogens, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Stéphane De Craeye
- Unit of Foodborne Pathogens, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Jan Verhaegen
- Laboratory of Clinical Bacteriology and Mycology, KULeuven, 3000 Leuven, Belgium
| | | | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Raymond Vanhoof
- Unit of Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
- * E-mail:
| |
Collapse
|