1
|
Anaduaka EG, Uchendu NO, Asomadu RO, Ezugwu AL, Okeke ES, Chidike Ezeorba TP. Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon 2023; 9:e15173. [PMID: 37113785 PMCID: PMC10126862 DOI: 10.1016/j.heliyon.2023.e15173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Chemicals used for storage majorly possess insecticidal activities - deterring destructive insect pests and microorganisms from stored agricultural produce. Despite the controversy about their safety, local farmers and agro-wholesalers still predominantly use these chemicals in developing countries, especially Africa, to ensure an all-year supply of agriproducts. These chemicals could have short- or long-term effects. Despite the state-of-the-art knowledge, factors such as poor education and awareness, limited agricultural subventions, quests for cheap chemicals, over-dosage, and many more are the possible reasons for these toxic chemicals' setback and persistent use in developing countries. This paper provides an up-to-date review of the environmental and ecological effects, as well as the health impacts arising from the indiscriminate use of toxic chemicals in agriproducts. Existing data link pesticides to endocrine disruption, genetic mutations, neurological dysfunction, and other metabolic disorders, apart from the myriad of acute effects. Finally, this study recommended several naturally sourced preservatives as viable alternatives to chemical counterparts and emphasized the invaluable role of education and awareness programs in mitigating the use in developing nations for a sustainable society.
Collapse
Affiliation(s)
- Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Nene Orizu Uchendu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Corresponding author. Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
| |
Collapse
|
2
|
Wang Z, Yin L, Liu L, Lan X, He J, Wan F, Shen W, Tang S, Tan Z, Yang Y. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front Vet Sci 2022; 9:1004841. [PMID: 36187804 PMCID: PMC9516568 DOI: 10.3389/fvets.2022.1004841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1β, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanming Yang
- Jiurui Biology & Chemistry Co., Ltd., Zhangjiajie, China
| |
Collapse
|
3
|
Cobilinschi C, Țincu R, Ungureanu R, Dumitru I, Băetu A, Isac S, Cobilinschi CO, Grințescu IM, Mirea L. Toxic-Induced Nonthyroidal Illness Syndrome Induced by Acute Low-Dose Pesticides Exposure-Preliminary In Vivo Study. TOXICS 2022; 10:511. [PMID: 36136476 PMCID: PMC9503844 DOI: 10.3390/toxics10090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Conditions such as trauma, burns, sepsis, or acute intoxications have considerable consequences on the endocrine status, causing "sick euthyroid syndrome". Organophosphate exposure may induce an increase in acetylcholine levels, thus altering the thyroid's hormonal status. The present study aims to identify the effects of acetylcholinesterase inhibition on thyroid hormones. MATERIAL AND METHODS A prospective experimental study was conducted on twenty Wistar rats. Blood samples were drawn to set baseline values for thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Chlorpyrifos 0.1 mg/kg was administered by oral gavage to induce acetyl-cholinesterase inhibition. After exhibiting cholinergic symptoms, blood samples were collected to assess levels of cholinesterase and thyroid hormones using ELISA. RESULTS Butyrylcholinesterase levels confirmed major inhibition immediately after intoxication compared to the baseline, certifying the intoxication. A significant increase in T4 levels was noted (p = 0.01) both at 2 h and 48 h after administration of organophosphate in sample rats. Similarly, T3 almost doubled its value 2 h after poisoning (4.2 ng/mL versus 2.5 ng/mL at baseline). Surprisingly, TSH displayed acute elevation with an afterward slow descending trend at 48 h (p = 0.1), reaching baseline value. CONCLUSIONS This study demonstrated that cholinesterase inhibition caused major alterations in thyroid hormone levels, which may be characterized by a transient hypothyroidism status with an impact on survival prognosis.
Collapse
Affiliation(s)
- Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Radu Țincu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Raluca Ungureanu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Dumitru
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Alexandru Băetu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Claudia Oana Cobilinschi
- Department of Internal Medicine, Sf Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Liliana Mirea
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|