1
|
Natural Reno-Protective Agents against Cyclosporine A-Induced Nephrotoxicity: An Overview. Molecules 2022; 27:molecules27227771. [PMID: 36431872 PMCID: PMC9693876 DOI: 10.3390/molecules27227771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
CA (cyclosporine A) is a powerful immunosuppressing agent that is commonly utilized for treating various autoimmune illnesses and in transplantation surgery. However, its usage has been significantly restricted because of its unwanted effects, including nephrotoxicity. The pathophysiology of CA-induced kidney injury involves inflammation, apoptosis, tubular injury, oxidative stress, and vascular injury. Despite the fact that exact mechanism accountable for CA's effects is inadequately understood, ROS (reactive oxygen species) involvement has been widely proposed. At present, there are no efficient methods or drugs for treating CA-caused kidney damage. It is noteworthy that diverse natural products have been investigated both in vivo and in-vitro for their possible preventive potential in CA-produced nephrotoxicity. Various extracts and natural metabolites have been found to possess a remarkable potential for restoring CA-produced renal damage and oxidative stress alterations via their anti-apoptosis, anti-inflammatory, and antioxidative potentials. The present article reviews the reported studies that assess the protective capacity of natural products, as well as dietary regimens, in relation to CA-induced nephrotoxicity. Thus, the present study presents novel ideas for designing and developing more efficient prophylactic or remedial strategies versus CA passive influences.
Collapse
|
2
|
de Bem GF, Okinga A, Ognibene DT, da Costa CA, Santos IB, Soares RA, Silva DLB, da Rocha APM, Isnardo Fernandes J, Fraga MC, Filgueiras CC, Manhães AC, Soares de Moura R, Resende AC. Anxiolytic and antioxidant effects of Euterpe oleracea Mart. (açaí) seed extract in adult rat offspring submitted to periodic maternal separation. Appl Physiol Nutr Metab 2020; 45:1277-1286. [PMID: 32516542 DOI: 10.1139/apnm-2020-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many studies suggest a protective role of phenolic compounds in mood disorders. We aimed to assess the effect of Euterpe oleracea (açaí) seed extract (ASE) on anxiety induced by periodic maternal separation (PMS) in adult male rats. Animals were divided into 6 groups: control, ASE, fluoxetine (FLU), PMS, PMS+ASE, and PMS+FLU. For PMS, pups were separated daily from the dam for 3 h between postnatal day (PN) 2 and PN21. ASE (200 mg·kg-1·day-1) and FLU (10 mg·kg-1·day-1) were administered by gavage for 34 days after stress induction, starting at PN76. At PN106 and PN108, the rats were submitted to open field (OF) and forced swim tests, respectively. At PN110, the rats were sacrificed by decapitation. ASE increased time spent in the center area in the OF test, glucocorticoid receptors in the hypothalamus, tropomyosin receptor kinase B (TRKB) levels in the hippocampus, and nitrite levels and antioxidant activity in the brain stem (PMS+ASE group compared with PMS group). ASE also reduced plasma corticotropin-releasing hormone levels, adrenal norepinephrine levels, and oxidative damage in the brain stem in adult male offspring submitted to PMS. In conclusion, ASE treatment has an anti-anxiety effect in rats submitted to PMS by reducing hypothalamic-pituitary-adrenal axis reactivity and increasing the nitric oxide (NO)-brain-derived neurotrophic factor (BDNF)-TRKB pathway and antioxidant defense in the central nervous system. Novelty ASE has anti-anxiety and antioxidant effects in early-life stress. ASE reduces hypothalamic-pituitary-adrenal axis reactivity. The anxiolytic effect of ASE may involve activation of the NO-BDNF-TRKB pathway in the central nervous system.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Anicet Okinga
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ricardo Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dafne Lopes Beserra Silva
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ana Paula Machado da Rocha
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jemima Isnardo Fernandes
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Mabel Carneiro Fraga
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cláudio Carneiro Filgueiras
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Alex Christian Manhães
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| |
Collapse
|
3
|
Greyling A, Bruno RM, Draijer R, Mulder T, Thijssen DH, Taddei S, Virdis A, Ghiadoni L. Effects of wine and grape polyphenols on blood pressure, endothelial function and sympathetic nervous system activity in treated hypertensive subjects. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
4
|
Wirtz PH, von Känel R, Meister RE, Arpagaus A, Treichler S, Kuebler U, Huber S, Ehlert U. Dark Chocolate Intake Buffers Stress Reactivity in Humans. J Am Coll Cardiol 2014; 63:2297-9. [DOI: 10.1016/j.jacc.2014.02.580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/09/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
|